| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elzs12 |
⊢ ( 𝐴 ∈ ℤs[1/2] ↔ ∃ 𝑎 ∈ ℤs ∃ 𝑛 ∈ ℕ0s 𝐴 = ( 𝑎 /su ( 2s ↑s 𝑛 ) ) ) |
| 2 |
|
elzs12 |
⊢ ( 𝐵 ∈ ℤs[1/2] ↔ ∃ 𝑏 ∈ ℤs ∃ 𝑚 ∈ ℕ0s 𝐵 = ( 𝑏 /su ( 2s ↑s 𝑚 ) ) ) |
| 3 |
|
reeanv |
⊢ ( ∃ 𝑛 ∈ ℕ0s ∃ 𝑚 ∈ ℕ0s ( 𝐴 = ( 𝑎 /su ( 2s ↑s 𝑛 ) ) ∧ 𝐵 = ( 𝑏 /su ( 2s ↑s 𝑚 ) ) ) ↔ ( ∃ 𝑛 ∈ ℕ0s 𝐴 = ( 𝑎 /su ( 2s ↑s 𝑛 ) ) ∧ ∃ 𝑚 ∈ ℕ0s 𝐵 = ( 𝑏 /su ( 2s ↑s 𝑚 ) ) ) ) |
| 4 |
3
|
2rexbii |
⊢ ( ∃ 𝑎 ∈ ℤs ∃ 𝑏 ∈ ℤs ∃ 𝑛 ∈ ℕ0s ∃ 𝑚 ∈ ℕ0s ( 𝐴 = ( 𝑎 /su ( 2s ↑s 𝑛 ) ) ∧ 𝐵 = ( 𝑏 /su ( 2s ↑s 𝑚 ) ) ) ↔ ∃ 𝑎 ∈ ℤs ∃ 𝑏 ∈ ℤs ( ∃ 𝑛 ∈ ℕ0s 𝐴 = ( 𝑎 /su ( 2s ↑s 𝑛 ) ) ∧ ∃ 𝑚 ∈ ℕ0s 𝐵 = ( 𝑏 /su ( 2s ↑s 𝑚 ) ) ) ) |
| 5 |
|
reeanv |
⊢ ( ∃ 𝑎 ∈ ℤs ∃ 𝑏 ∈ ℤs ( ∃ 𝑛 ∈ ℕ0s 𝐴 = ( 𝑎 /su ( 2s ↑s 𝑛 ) ) ∧ ∃ 𝑚 ∈ ℕ0s 𝐵 = ( 𝑏 /su ( 2s ↑s 𝑚 ) ) ) ↔ ( ∃ 𝑎 ∈ ℤs ∃ 𝑛 ∈ ℕ0s 𝐴 = ( 𝑎 /su ( 2s ↑s 𝑛 ) ) ∧ ∃ 𝑏 ∈ ℤs ∃ 𝑚 ∈ ℕ0s 𝐵 = ( 𝑏 /su ( 2s ↑s 𝑚 ) ) ) ) |
| 6 |
4 5
|
bitri |
⊢ ( ∃ 𝑎 ∈ ℤs ∃ 𝑏 ∈ ℤs ∃ 𝑛 ∈ ℕ0s ∃ 𝑚 ∈ ℕ0s ( 𝐴 = ( 𝑎 /su ( 2s ↑s 𝑛 ) ) ∧ 𝐵 = ( 𝑏 /su ( 2s ↑s 𝑚 ) ) ) ↔ ( ∃ 𝑎 ∈ ℤs ∃ 𝑛 ∈ ℕ0s 𝐴 = ( 𝑎 /su ( 2s ↑s 𝑛 ) ) ∧ ∃ 𝑏 ∈ ℤs ∃ 𝑚 ∈ ℕ0s 𝐵 = ( 𝑏 /su ( 2s ↑s 𝑚 ) ) ) ) |
| 7 |
|
simpll |
⊢ ( ( ( 𝑎 ∈ ℤs ∧ 𝑏 ∈ ℤs ) ∧ ( 𝑛 ∈ ℕ0s ∧ 𝑚 ∈ ℕ0s ) ) → 𝑎 ∈ ℤs ) |
| 8 |
7
|
znod |
⊢ ( ( ( 𝑎 ∈ ℤs ∧ 𝑏 ∈ ℤs ) ∧ ( 𝑛 ∈ ℕ0s ∧ 𝑚 ∈ ℕ0s ) ) → 𝑎 ∈ No ) |
| 9 |
|
simprl |
⊢ ( ( ( 𝑎 ∈ ℤs ∧ 𝑏 ∈ ℤs ) ∧ ( 𝑛 ∈ ℕ0s ∧ 𝑚 ∈ ℕ0s ) ) → 𝑛 ∈ ℕ0s ) |
| 10 |
|
simprr |
⊢ ( ( ( 𝑎 ∈ ℤs ∧ 𝑏 ∈ ℤs ) ∧ ( 𝑛 ∈ ℕ0s ∧ 𝑚 ∈ ℕ0s ) ) → 𝑚 ∈ ℕ0s ) |
| 11 |
8 9 10
|
pw2divscan4d |
⊢ ( ( ( 𝑎 ∈ ℤs ∧ 𝑏 ∈ ℤs ) ∧ ( 𝑛 ∈ ℕ0s ∧ 𝑚 ∈ ℕ0s ) ) → ( 𝑎 /su ( 2s ↑s 𝑛 ) ) = ( ( ( 2s ↑s 𝑚 ) ·s 𝑎 ) /su ( 2s ↑s ( 𝑛 +s 𝑚 ) ) ) ) |
| 12 |
|
simplr |
⊢ ( ( ( 𝑎 ∈ ℤs ∧ 𝑏 ∈ ℤs ) ∧ ( 𝑛 ∈ ℕ0s ∧ 𝑚 ∈ ℕ0s ) ) → 𝑏 ∈ ℤs ) |
| 13 |
12
|
znod |
⊢ ( ( ( 𝑎 ∈ ℤs ∧ 𝑏 ∈ ℤs ) ∧ ( 𝑛 ∈ ℕ0s ∧ 𝑚 ∈ ℕ0s ) ) → 𝑏 ∈ No ) |
| 14 |
13 10 9
|
pw2divscan4d |
⊢ ( ( ( 𝑎 ∈ ℤs ∧ 𝑏 ∈ ℤs ) ∧ ( 𝑛 ∈ ℕ0s ∧ 𝑚 ∈ ℕ0s ) ) → ( 𝑏 /su ( 2s ↑s 𝑚 ) ) = ( ( ( 2s ↑s 𝑛 ) ·s 𝑏 ) /su ( 2s ↑s ( 𝑚 +s 𝑛 ) ) ) ) |
| 15 |
10
|
n0snod |
⊢ ( ( ( 𝑎 ∈ ℤs ∧ 𝑏 ∈ ℤs ) ∧ ( 𝑛 ∈ ℕ0s ∧ 𝑚 ∈ ℕ0s ) ) → 𝑚 ∈ No ) |
| 16 |
9
|
n0snod |
⊢ ( ( ( 𝑎 ∈ ℤs ∧ 𝑏 ∈ ℤs ) ∧ ( 𝑛 ∈ ℕ0s ∧ 𝑚 ∈ ℕ0s ) ) → 𝑛 ∈ No ) |
| 17 |
15 16
|
addscomd |
⊢ ( ( ( 𝑎 ∈ ℤs ∧ 𝑏 ∈ ℤs ) ∧ ( 𝑛 ∈ ℕ0s ∧ 𝑚 ∈ ℕ0s ) ) → ( 𝑚 +s 𝑛 ) = ( 𝑛 +s 𝑚 ) ) |
| 18 |
17
|
oveq2d |
⊢ ( ( ( 𝑎 ∈ ℤs ∧ 𝑏 ∈ ℤs ) ∧ ( 𝑛 ∈ ℕ0s ∧ 𝑚 ∈ ℕ0s ) ) → ( 2s ↑s ( 𝑚 +s 𝑛 ) ) = ( 2s ↑s ( 𝑛 +s 𝑚 ) ) ) |
| 19 |
18
|
oveq2d |
⊢ ( ( ( 𝑎 ∈ ℤs ∧ 𝑏 ∈ ℤs ) ∧ ( 𝑛 ∈ ℕ0s ∧ 𝑚 ∈ ℕ0s ) ) → ( ( ( 2s ↑s 𝑛 ) ·s 𝑏 ) /su ( 2s ↑s ( 𝑚 +s 𝑛 ) ) ) = ( ( ( 2s ↑s 𝑛 ) ·s 𝑏 ) /su ( 2s ↑s ( 𝑛 +s 𝑚 ) ) ) ) |
| 20 |
14 19
|
eqtrd |
⊢ ( ( ( 𝑎 ∈ ℤs ∧ 𝑏 ∈ ℤs ) ∧ ( 𝑛 ∈ ℕ0s ∧ 𝑚 ∈ ℕ0s ) ) → ( 𝑏 /su ( 2s ↑s 𝑚 ) ) = ( ( ( 2s ↑s 𝑛 ) ·s 𝑏 ) /su ( 2s ↑s ( 𝑛 +s 𝑚 ) ) ) ) |
| 21 |
11 20
|
oveq12d |
⊢ ( ( ( 𝑎 ∈ ℤs ∧ 𝑏 ∈ ℤs ) ∧ ( 𝑛 ∈ ℕ0s ∧ 𝑚 ∈ ℕ0s ) ) → ( ( 𝑎 /su ( 2s ↑s 𝑛 ) ) +s ( 𝑏 /su ( 2s ↑s 𝑚 ) ) ) = ( ( ( ( 2s ↑s 𝑚 ) ·s 𝑎 ) /su ( 2s ↑s ( 𝑛 +s 𝑚 ) ) ) +s ( ( ( 2s ↑s 𝑛 ) ·s 𝑏 ) /su ( 2s ↑s ( 𝑛 +s 𝑚 ) ) ) ) ) |
| 22 |
|
2sno |
⊢ 2s ∈ No |
| 23 |
|
expscl |
⊢ ( ( 2s ∈ No ∧ 𝑚 ∈ ℕ0s ) → ( 2s ↑s 𝑚 ) ∈ No ) |
| 24 |
22 10 23
|
sylancr |
⊢ ( ( ( 𝑎 ∈ ℤs ∧ 𝑏 ∈ ℤs ) ∧ ( 𝑛 ∈ ℕ0s ∧ 𝑚 ∈ ℕ0s ) ) → ( 2s ↑s 𝑚 ) ∈ No ) |
| 25 |
24 8
|
mulscld |
⊢ ( ( ( 𝑎 ∈ ℤs ∧ 𝑏 ∈ ℤs ) ∧ ( 𝑛 ∈ ℕ0s ∧ 𝑚 ∈ ℕ0s ) ) → ( ( 2s ↑s 𝑚 ) ·s 𝑎 ) ∈ No ) |
| 26 |
|
expscl |
⊢ ( ( 2s ∈ No ∧ 𝑛 ∈ ℕ0s ) → ( 2s ↑s 𝑛 ) ∈ No ) |
| 27 |
22 9 26
|
sylancr |
⊢ ( ( ( 𝑎 ∈ ℤs ∧ 𝑏 ∈ ℤs ) ∧ ( 𝑛 ∈ ℕ0s ∧ 𝑚 ∈ ℕ0s ) ) → ( 2s ↑s 𝑛 ) ∈ No ) |
| 28 |
27 13
|
mulscld |
⊢ ( ( ( 𝑎 ∈ ℤs ∧ 𝑏 ∈ ℤs ) ∧ ( 𝑛 ∈ ℕ0s ∧ 𝑚 ∈ ℕ0s ) ) → ( ( 2s ↑s 𝑛 ) ·s 𝑏 ) ∈ No ) |
| 29 |
|
n0addscl |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝑚 ∈ ℕ0s ) → ( 𝑛 +s 𝑚 ) ∈ ℕ0s ) |
| 30 |
29
|
adantl |
⊢ ( ( ( 𝑎 ∈ ℤs ∧ 𝑏 ∈ ℤs ) ∧ ( 𝑛 ∈ ℕ0s ∧ 𝑚 ∈ ℕ0s ) ) → ( 𝑛 +s 𝑚 ) ∈ ℕ0s ) |
| 31 |
25 28 30
|
pw2divsdird |
⊢ ( ( ( 𝑎 ∈ ℤs ∧ 𝑏 ∈ ℤs ) ∧ ( 𝑛 ∈ ℕ0s ∧ 𝑚 ∈ ℕ0s ) ) → ( ( ( ( 2s ↑s 𝑚 ) ·s 𝑎 ) +s ( ( 2s ↑s 𝑛 ) ·s 𝑏 ) ) /su ( 2s ↑s ( 𝑛 +s 𝑚 ) ) ) = ( ( ( ( 2s ↑s 𝑚 ) ·s 𝑎 ) /su ( 2s ↑s ( 𝑛 +s 𝑚 ) ) ) +s ( ( ( 2s ↑s 𝑛 ) ·s 𝑏 ) /su ( 2s ↑s ( 𝑛 +s 𝑚 ) ) ) ) ) |
| 32 |
21 31
|
eqtr4d |
⊢ ( ( ( 𝑎 ∈ ℤs ∧ 𝑏 ∈ ℤs ) ∧ ( 𝑛 ∈ ℕ0s ∧ 𝑚 ∈ ℕ0s ) ) → ( ( 𝑎 /su ( 2s ↑s 𝑛 ) ) +s ( 𝑏 /su ( 2s ↑s 𝑚 ) ) ) = ( ( ( ( 2s ↑s 𝑚 ) ·s 𝑎 ) +s ( ( 2s ↑s 𝑛 ) ·s 𝑏 ) ) /su ( 2s ↑s ( 𝑛 +s 𝑚 ) ) ) ) |
| 33 |
|
oveq1 |
⊢ ( 𝑐 = ( ( ( 2s ↑s 𝑚 ) ·s 𝑎 ) +s ( ( 2s ↑s 𝑛 ) ·s 𝑏 ) ) → ( 𝑐 /su ( 2s ↑s 𝑝 ) ) = ( ( ( ( 2s ↑s 𝑚 ) ·s 𝑎 ) +s ( ( 2s ↑s 𝑛 ) ·s 𝑏 ) ) /su ( 2s ↑s 𝑝 ) ) ) |
| 34 |
33
|
eqeq2d |
⊢ ( 𝑐 = ( ( ( 2s ↑s 𝑚 ) ·s 𝑎 ) +s ( ( 2s ↑s 𝑛 ) ·s 𝑏 ) ) → ( ( ( ( ( 2s ↑s 𝑚 ) ·s 𝑎 ) +s ( ( 2s ↑s 𝑛 ) ·s 𝑏 ) ) /su ( 2s ↑s ( 𝑛 +s 𝑚 ) ) ) = ( 𝑐 /su ( 2s ↑s 𝑝 ) ) ↔ ( ( ( ( 2s ↑s 𝑚 ) ·s 𝑎 ) +s ( ( 2s ↑s 𝑛 ) ·s 𝑏 ) ) /su ( 2s ↑s ( 𝑛 +s 𝑚 ) ) ) = ( ( ( ( 2s ↑s 𝑚 ) ·s 𝑎 ) +s ( ( 2s ↑s 𝑛 ) ·s 𝑏 ) ) /su ( 2s ↑s 𝑝 ) ) ) ) |
| 35 |
|
oveq2 |
⊢ ( 𝑝 = ( 𝑛 +s 𝑚 ) → ( 2s ↑s 𝑝 ) = ( 2s ↑s ( 𝑛 +s 𝑚 ) ) ) |
| 36 |
35
|
oveq2d |
⊢ ( 𝑝 = ( 𝑛 +s 𝑚 ) → ( ( ( ( 2s ↑s 𝑚 ) ·s 𝑎 ) +s ( ( 2s ↑s 𝑛 ) ·s 𝑏 ) ) /su ( 2s ↑s 𝑝 ) ) = ( ( ( ( 2s ↑s 𝑚 ) ·s 𝑎 ) +s ( ( 2s ↑s 𝑛 ) ·s 𝑏 ) ) /su ( 2s ↑s ( 𝑛 +s 𝑚 ) ) ) ) |
| 37 |
36
|
eqeq2d |
⊢ ( 𝑝 = ( 𝑛 +s 𝑚 ) → ( ( ( ( ( 2s ↑s 𝑚 ) ·s 𝑎 ) +s ( ( 2s ↑s 𝑛 ) ·s 𝑏 ) ) /su ( 2s ↑s ( 𝑛 +s 𝑚 ) ) ) = ( ( ( ( 2s ↑s 𝑚 ) ·s 𝑎 ) +s ( ( 2s ↑s 𝑛 ) ·s 𝑏 ) ) /su ( 2s ↑s 𝑝 ) ) ↔ ( ( ( ( 2s ↑s 𝑚 ) ·s 𝑎 ) +s ( ( 2s ↑s 𝑛 ) ·s 𝑏 ) ) /su ( 2s ↑s ( 𝑛 +s 𝑚 ) ) ) = ( ( ( ( 2s ↑s 𝑚 ) ·s 𝑎 ) +s ( ( 2s ↑s 𝑛 ) ·s 𝑏 ) ) /su ( 2s ↑s ( 𝑛 +s 𝑚 ) ) ) ) ) |
| 38 |
|
2nns |
⊢ 2s ∈ ℕs |
| 39 |
|
nnzs |
⊢ ( 2s ∈ ℕs → 2s ∈ ℤs ) |
| 40 |
38 39
|
ax-mp |
⊢ 2s ∈ ℤs |
| 41 |
|
zexpscl |
⊢ ( ( 2s ∈ ℤs ∧ 𝑚 ∈ ℕ0s ) → ( 2s ↑s 𝑚 ) ∈ ℤs ) |
| 42 |
40 10 41
|
sylancr |
⊢ ( ( ( 𝑎 ∈ ℤs ∧ 𝑏 ∈ ℤs ) ∧ ( 𝑛 ∈ ℕ0s ∧ 𝑚 ∈ ℕ0s ) ) → ( 2s ↑s 𝑚 ) ∈ ℤs ) |
| 43 |
42 7
|
zmulscld |
⊢ ( ( ( 𝑎 ∈ ℤs ∧ 𝑏 ∈ ℤs ) ∧ ( 𝑛 ∈ ℕ0s ∧ 𝑚 ∈ ℕ0s ) ) → ( ( 2s ↑s 𝑚 ) ·s 𝑎 ) ∈ ℤs ) |
| 44 |
|
zexpscl |
⊢ ( ( 2s ∈ ℤs ∧ 𝑛 ∈ ℕ0s ) → ( 2s ↑s 𝑛 ) ∈ ℤs ) |
| 45 |
40 9 44
|
sylancr |
⊢ ( ( ( 𝑎 ∈ ℤs ∧ 𝑏 ∈ ℤs ) ∧ ( 𝑛 ∈ ℕ0s ∧ 𝑚 ∈ ℕ0s ) ) → ( 2s ↑s 𝑛 ) ∈ ℤs ) |
| 46 |
45 12
|
zmulscld |
⊢ ( ( ( 𝑎 ∈ ℤs ∧ 𝑏 ∈ ℤs ) ∧ ( 𝑛 ∈ ℕ0s ∧ 𝑚 ∈ ℕ0s ) ) → ( ( 2s ↑s 𝑛 ) ·s 𝑏 ) ∈ ℤs ) |
| 47 |
43 46
|
zaddscld |
⊢ ( ( ( 𝑎 ∈ ℤs ∧ 𝑏 ∈ ℤs ) ∧ ( 𝑛 ∈ ℕ0s ∧ 𝑚 ∈ ℕ0s ) ) → ( ( ( 2s ↑s 𝑚 ) ·s 𝑎 ) +s ( ( 2s ↑s 𝑛 ) ·s 𝑏 ) ) ∈ ℤs ) |
| 48 |
|
eqidd |
⊢ ( ( ( 𝑎 ∈ ℤs ∧ 𝑏 ∈ ℤs ) ∧ ( 𝑛 ∈ ℕ0s ∧ 𝑚 ∈ ℕ0s ) ) → ( ( ( ( 2s ↑s 𝑚 ) ·s 𝑎 ) +s ( ( 2s ↑s 𝑛 ) ·s 𝑏 ) ) /su ( 2s ↑s ( 𝑛 +s 𝑚 ) ) ) = ( ( ( ( 2s ↑s 𝑚 ) ·s 𝑎 ) +s ( ( 2s ↑s 𝑛 ) ·s 𝑏 ) ) /su ( 2s ↑s ( 𝑛 +s 𝑚 ) ) ) ) |
| 49 |
34 37 47 30 48
|
2rspcedvdw |
⊢ ( ( ( 𝑎 ∈ ℤs ∧ 𝑏 ∈ ℤs ) ∧ ( 𝑛 ∈ ℕ0s ∧ 𝑚 ∈ ℕ0s ) ) → ∃ 𝑐 ∈ ℤs ∃ 𝑝 ∈ ℕ0s ( ( ( ( 2s ↑s 𝑚 ) ·s 𝑎 ) +s ( ( 2s ↑s 𝑛 ) ·s 𝑏 ) ) /su ( 2s ↑s ( 𝑛 +s 𝑚 ) ) ) = ( 𝑐 /su ( 2s ↑s 𝑝 ) ) ) |
| 50 |
|
elzs12 |
⊢ ( ( ( ( ( 2s ↑s 𝑚 ) ·s 𝑎 ) +s ( ( 2s ↑s 𝑛 ) ·s 𝑏 ) ) /su ( 2s ↑s ( 𝑛 +s 𝑚 ) ) ) ∈ ℤs[1/2] ↔ ∃ 𝑐 ∈ ℤs ∃ 𝑝 ∈ ℕ0s ( ( ( ( 2s ↑s 𝑚 ) ·s 𝑎 ) +s ( ( 2s ↑s 𝑛 ) ·s 𝑏 ) ) /su ( 2s ↑s ( 𝑛 +s 𝑚 ) ) ) = ( 𝑐 /su ( 2s ↑s 𝑝 ) ) ) |
| 51 |
49 50
|
sylibr |
⊢ ( ( ( 𝑎 ∈ ℤs ∧ 𝑏 ∈ ℤs ) ∧ ( 𝑛 ∈ ℕ0s ∧ 𝑚 ∈ ℕ0s ) ) → ( ( ( ( 2s ↑s 𝑚 ) ·s 𝑎 ) +s ( ( 2s ↑s 𝑛 ) ·s 𝑏 ) ) /su ( 2s ↑s ( 𝑛 +s 𝑚 ) ) ) ∈ ℤs[1/2] ) |
| 52 |
32 51
|
eqeltrd |
⊢ ( ( ( 𝑎 ∈ ℤs ∧ 𝑏 ∈ ℤs ) ∧ ( 𝑛 ∈ ℕ0s ∧ 𝑚 ∈ ℕ0s ) ) → ( ( 𝑎 /su ( 2s ↑s 𝑛 ) ) +s ( 𝑏 /su ( 2s ↑s 𝑚 ) ) ) ∈ ℤs[1/2] ) |
| 53 |
|
oveq12 |
⊢ ( ( 𝐴 = ( 𝑎 /su ( 2s ↑s 𝑛 ) ) ∧ 𝐵 = ( 𝑏 /su ( 2s ↑s 𝑚 ) ) ) → ( 𝐴 +s 𝐵 ) = ( ( 𝑎 /su ( 2s ↑s 𝑛 ) ) +s ( 𝑏 /su ( 2s ↑s 𝑚 ) ) ) ) |
| 54 |
53
|
eleq1d |
⊢ ( ( 𝐴 = ( 𝑎 /su ( 2s ↑s 𝑛 ) ) ∧ 𝐵 = ( 𝑏 /su ( 2s ↑s 𝑚 ) ) ) → ( ( 𝐴 +s 𝐵 ) ∈ ℤs[1/2] ↔ ( ( 𝑎 /su ( 2s ↑s 𝑛 ) ) +s ( 𝑏 /su ( 2s ↑s 𝑚 ) ) ) ∈ ℤs[1/2] ) ) |
| 55 |
52 54
|
syl5ibrcom |
⊢ ( ( ( 𝑎 ∈ ℤs ∧ 𝑏 ∈ ℤs ) ∧ ( 𝑛 ∈ ℕ0s ∧ 𝑚 ∈ ℕ0s ) ) → ( ( 𝐴 = ( 𝑎 /su ( 2s ↑s 𝑛 ) ) ∧ 𝐵 = ( 𝑏 /su ( 2s ↑s 𝑚 ) ) ) → ( 𝐴 +s 𝐵 ) ∈ ℤs[1/2] ) ) |
| 56 |
55
|
rexlimdvva |
⊢ ( ( 𝑎 ∈ ℤs ∧ 𝑏 ∈ ℤs ) → ( ∃ 𝑛 ∈ ℕ0s ∃ 𝑚 ∈ ℕ0s ( 𝐴 = ( 𝑎 /su ( 2s ↑s 𝑛 ) ) ∧ 𝐵 = ( 𝑏 /su ( 2s ↑s 𝑚 ) ) ) → ( 𝐴 +s 𝐵 ) ∈ ℤs[1/2] ) ) |
| 57 |
56
|
rexlimivv |
⊢ ( ∃ 𝑎 ∈ ℤs ∃ 𝑏 ∈ ℤs ∃ 𝑛 ∈ ℕ0s ∃ 𝑚 ∈ ℕ0s ( 𝐴 = ( 𝑎 /su ( 2s ↑s 𝑛 ) ) ∧ 𝐵 = ( 𝑏 /su ( 2s ↑s 𝑚 ) ) ) → ( 𝐴 +s 𝐵 ) ∈ ℤs[1/2] ) |
| 58 |
6 57
|
sylbir |
⊢ ( ( ∃ 𝑎 ∈ ℤs ∃ 𝑛 ∈ ℕ0s 𝐴 = ( 𝑎 /su ( 2s ↑s 𝑛 ) ) ∧ ∃ 𝑏 ∈ ℤs ∃ 𝑚 ∈ ℕ0s 𝐵 = ( 𝑏 /su ( 2s ↑s 𝑚 ) ) ) → ( 𝐴 +s 𝐵 ) ∈ ℤs[1/2] ) |
| 59 |
1 2 58
|
syl2anb |
⊢ ( ( 𝐴 ∈ ℤs[1/2] ∧ 𝐵 ∈ ℤs[1/2] ) → ( 𝐴 +s 𝐵 ) ∈ ℤs[1/2] ) |