Metamath Proof Explorer


Theorem 0cnALT

Description: Alternate proof of 0cn which does not reference ax-1cn . (Contributed by NM, 19-Feb-2005) (Revised by Mario Carneiro, 27-May-2016) Reduce dependencies on axioms. (Revised by Steven Nguyen, 7-Jan-2022) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion 0cnALT 0

Proof

Step Hyp Ref Expression
1 ax-icn i
2 cnre ixyi=x+iy
3 ax-rnegex xzx+z=0
4 readdcl xzx+z
5 eleq1 x+z=0x+z0
6 4 5 syl5ibcom xzx+z=00
7 6 rexlimdva xzx+z=00
8 3 7 mpd x0
9 8 adantr xyi=x+iy0
10 9 rexlimiva xyi=x+iy0
11 1 2 10 mp2b 0
12 11 recni 0