Metamath Proof Explorer


Theorem 0g0

Description: The identity element function evaluates to the empty set on an empty structure. (Contributed by Stefan O'Rear, 2-Oct-2015)

Ref Expression
Assertion 0g0 =0

Proof

Step Hyp Ref Expression
1 base0 =Base
2 eqid +=+
3 eqid 0=0
4 1 2 3 grpidval 0=ιe|exe+x=xx+e=x
5 noel ¬e
6 5 intnanr ¬exe+x=xx+e=x
7 6 nex ¬eexe+x=xx+e=x
8 euex ∃!eexe+x=xx+e=xeexe+x=xx+e=x
9 7 8 mto ¬∃!eexe+x=xx+e=x
10 iotanul ¬∃!eexe+x=xx+e=xιe|exe+x=xx+e=x=
11 9 10 ax-mp ιe|exe+x=xx+e=x=
12 4 11 eqtr2i =0