Metamath Proof Explorer


Theorem 0nelopab

Description: The empty set is never an element in an ordered-pair class abstraction. (Contributed by Alexander van der Vekens, 5-Nov-2017) Reduce axiom usage and shorten proof. (Revised by Gino Giotto, 3-Oct-2024)

Ref Expression
Assertion 0nelopab ¬xy|φ

Proof

Step Hyp Ref Expression
1 vex xV
2 vex yV
3 1 2 opnzi xy
4 3 nesymi ¬=xy
5 4 intnanr ¬=xyφ
6 5 nex ¬y=xyφ
7 6 nex ¬xy=xyφ
8 elopab xy|φxy=xyφ
9 7 8 mtbir ¬xy|φ