Metamath Proof Explorer


Theorem 0opn

Description: The empty set is an open subset of any topology. (Contributed by Stefan Allan, 27-Feb-2006)

Ref Expression
Assertion 0opn JTopJ

Proof

Step Hyp Ref Expression
1 uni0 =
2 0ss J
3 uniopn JTopJJ
4 2 3 mpan2 JTopJ
5 1 4 eqeltrrid JTopJ