Metamath Proof Explorer


Theorem 0setrec

Description: If a function sends the empty set to itself, the function will not recursively generate any sets, regardless of its other values. (Contributed by Emmett Weisz, 23-Jun-2021)

Ref Expression
Hypothesis 0setrec.1 φF=
Assertion 0setrec φsetrecsF=

Proof

Step Hyp Ref Expression
1 0setrec.1 φF=
2 eqid setrecsF=setrecsF
3 ss0 xx=
4 fveq2 x=Fx=F
5 4 1 sylan9eqr φx=Fx=
6 5 ex φx=Fx=
7 eqimss Fx=Fx
8 3 6 7 syl56 φxFx
9 8 alrimiv φxxFx
10 2 9 setrec2v φsetrecsF
11 ss0 setrecsFsetrecsF=
12 10 11 syl φsetrecsF=