Metamath Proof Explorer


Theorem 0spth

Description: A pair of an empty set (of edges) and a second set (of vertices) is a simple path iff the second set contains exactly one vertex. (Contributed by Alexander van der Vekens, 30-Oct-2017) (Revised by AV, 18-Jan-2021) (Revised by AV, 30-Oct-2021)

Ref Expression
Hypothesis 0pth.v V=VtxG
Assertion 0spth GWSPathsGPP:00V

Proof

Step Hyp Ref Expression
1 0pth.v V=VtxG
2 1 0trl GWTrailsGPP:00V
3 2 anbi1d GWTrailsGPFunP-1P:00VFunP-1
4 isspth SPathsGPTrailsGPFunP-1
5 fz0sn 00=0
6 5 feq2i P:00VP:0V
7 c0ex 0V
8 7 fsn2 P:0VP0VP=0P0
9 funcnvsn Fun0P0-1
10 cnveq P=0P0P-1=0P0-1
11 10 funeqd P=0P0FunP-1Fun0P0-1
12 9 11 mpbiri P=0P0FunP-1
13 8 12 simplbiim P:0VFunP-1
14 6 13 sylbi P:00VFunP-1
15 14 pm4.71i P:00VP:00VFunP-1
16 3 4 15 3bitr4g GWSPathsGPP:00V