Metamath Proof Explorer


Theorem 0wrd0

Description: The empty word is the only word over an empty alphabet. (Contributed by AV, 25-Oct-2018)

Ref Expression
Assertion 0wrd0 WWordW=

Proof

Step Hyp Ref Expression
1 wrdf WWordW:0..^W
2 f00 W:0..^WW=0..^W=
3 2 simplbi W:0..^WW=
4 1 3 syl WWordW=
5 wrd0 Word
6 eleq1 W=WWordWord
7 5 6 mpbiri W=WWord
8 4 7 impbii WWordW=