Metamath Proof Explorer


Theorem 19prm

Description: 19 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014) (Revised by Mario Carneiro, 20-Apr-2015)

Ref Expression
Assertion 19prm 19

Proof

Step Hyp Ref Expression
1 1nn0 10
2 9nn 9
3 1 2 decnncl 19
4 1nn 1
5 9nn0 90
6 1lt10 1<10
7 4 5 1 6 declti 1<19
8 4nn0 40
9 4t2e8 42=8
10 df-9 9=8+1
11 1 8 9 10 dec2dvds ¬219
12 3nn 3
13 6nn0 60
14 8nn0 80
15 8p1e9 8+1=9
16 6cn 6
17 3cn 3
18 6t3e18 63=18
19 16 17 18 mulcomli 36=18
20 1 14 15 19 decsuc 36+1=19
21 1lt3 1<3
22 12 13 4 20 21 ndvdsi ¬319
23 2nn0 20
24 5nn0 50
25 9lt10 9<10
26 1lt2 1<2
27 1 23 5 24 25 26 decltc 19<25
28 3 7 11 22 27 prmlem1 19