Metamath Proof Explorer


Theorem 23prm

Description: 23 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014) (Revised by Mario Carneiro, 20-Apr-2015)

Ref Expression
Assertion 23prm 23

Proof

Step Hyp Ref Expression
1 2nn0 20
2 3nn 3
3 1 2 decnncl 23
4 2nn 2
5 3nn0 30
6 1nn0 10
7 1lt10 1<10
8 4 5 6 7 declti 1<23
9 4 nncni 2
10 9 mullidi 12=2
11 df-3 3=2+1
12 1 6 10 11 dec2dvds ¬223
13 7nn0 70
14 7cn 7
15 2 nncni 3
16 7t3e21 73=21
17 14 15 16 mulcomli 37=21
18 1p2e3 1+2=3
19 1 6 1 17 18 decaddi 37+2=23
20 2lt3 2<3
21 2 13 4 19 20 ndvdsi ¬323
22 5nn 5
23 3lt5 3<5
24 1 5 22 23 declt 23<25
25 3 8 12 21 24 prmlem1 23