Database GRAPH THEORY Undirected graphs Vertex degree 1egrvtxdg1r  
				
		 
		
			
		 
		Description:   The vertex degree of a one-edge graph, case 3: an edge from some other
         vertex to the given vertex contributes one to the vertex's degree.
         (Contributed by Mario Carneiro , 12-Mar-2015)   (Revised by Alexander
         van der Vekens , 22-Dec-2017)   (Revised by AV , 21-Feb-2021) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						1egrvtxdg1.v    ⊢   φ   →     Vtx   ⁡  G   =  V         
					 
					
						1egrvtxdg1.a    ⊢   φ   →   A  ∈  X         
					 
					
						1egrvtxdg1.b    ⊢   φ   →   B  ∈  V         
					 
					
						1egrvtxdg1.c    ⊢   φ   →   C  ∈  V         
					 
					
						1egrvtxdg1.n    ⊢   φ   →   B  ≠  C         
					 
					
						1egrvtxdg1.i    ⊢   φ   →     iEdg   ⁡  G   =    A   B  C               
					 
				
					Assertion 
					1egrvtxdg1r    ⊢   φ   →      VtxDeg   ⁡  G   ⁡  C   =   1          
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							1egrvtxdg1.v   ⊢   φ   →     Vtx   ⁡  G   =  V         
						
							2 
								
							 
							1egrvtxdg1.a   ⊢   φ   →   A  ∈  X         
						
							3 
								
							 
							1egrvtxdg1.b   ⊢   φ   →   B  ∈  V         
						
							4 
								
							 
							1egrvtxdg1.c   ⊢   φ   →   C  ∈  V         
						
							5 
								
							 
							1egrvtxdg1.n   ⊢   φ   →   B  ≠  C         
						
							6 
								
							 
							1egrvtxdg1.i   ⊢   φ   →     iEdg   ⁡  G   =    A   B  C               
						
							7 
								5 
							 
							necomd   ⊢   φ   →   C  ≠  B         
						
							8 
								
							 
							prcom  ⊢    B  C    =   C  B         
						
							9 
								8 
							 
							a1i   ⊢   φ   →    B  C    =   C  B           
						
							10 
								9 
							 
							opeq2d   ⊢   φ   →    A   B  C      =   A   C  B             
						
							11 
								10 
							 
							sneqd   ⊢   φ   →     A   B  C        =    A   C  B               
						
							12 
								6  11 
							 
							eqtrd   ⊢   φ   →     iEdg   ⁡  G   =    A   C  B               
						
							13 
								1  2  4  3  7  12 
							 
							1egrvtxdg1   ⊢   φ   →      VtxDeg   ⁡  G   ⁡  C   =   1