Step |
Hyp |
Ref |
Expression |
1 |
|
1egrvtxdg1.v |
|
2 |
|
1egrvtxdg1.a |
|
3 |
|
1egrvtxdg1.b |
|
4 |
|
1egrvtxdg1.c |
|
5 |
|
1egrvtxdg1.n |
|
6 |
|
1egrvtxdg1.i |
|
7 |
|
eqid |
|
8 |
3 1
|
eleqtrrd |
|
9 |
4 1
|
eleqtrrd |
|
10 |
7 2 8 9 6 5
|
usgr1e |
|
11 |
|
eqid |
|
12 |
|
eqid |
|
13 |
|
eqid |
|
14 |
7 11 12 13
|
vtxdusgrval |
|
15 |
10 8 14
|
syl2anc |
|
16 |
|
dmeq |
|
17 |
16
|
adantl |
|
18 |
|
prex |
|
19 |
|
dmsnopg |
|
20 |
18 19
|
mp1i |
|
21 |
17 20
|
eqtrd |
|
22 |
|
fveq1 |
|
23 |
22
|
eleq2d |
|
24 |
23
|
adantl |
|
25 |
21 24
|
rabeqbidv |
|
26 |
25
|
fveq2d |
|
27 |
|
fveq2 |
|
28 |
27
|
eleq2d |
|
29 |
28
|
rabsnif |
|
30 |
|
prid1g |
|
31 |
3 30
|
syl |
|
32 |
|
fvsng |
|
33 |
2 18 32
|
sylancl |
|
34 |
31 33
|
eleqtrrd |
|
35 |
34
|
iftrued |
|
36 |
29 35
|
syl5eq |
|
37 |
36
|
fveq2d |
|
38 |
|
hashsng |
|
39 |
2 38
|
syl |
|
40 |
37 39
|
eqtrd |
|
41 |
40
|
adantr |
|
42 |
26 41
|
eqtrd |
|
43 |
6 42
|
mpdan |
|
44 |
15 43
|
eqtrd |
|