Database GRAPH THEORY Undirected graphs Vertex degree 1hegrvtxdg1  
				
		 
		
			
		 
		Description:   The vertex degree of a graph with one hyperedge, case 2: an edge from
       the given vertex to some other vertex contributes one to the vertex's
       degree.  (Contributed by Mario Carneiro , 12-Mar-2015)   (Revised by Alexander van der Vekens , 22-Dec-2017)   (Revised by AV , 23-Feb-2021) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						1hegrvtxdg1.a    ⊢   φ   →   A  ∈  X         
					 
					
						1hegrvtxdg1.b    ⊢   φ   →   B  ∈  V         
					 
					
						1hegrvtxdg1.c    ⊢   φ   →   C  ∈  V         
					 
					
						1hegrvtxdg1.n    ⊢   φ   →   B  ≠  C         
					 
					
						1hegrvtxdg1.x    ⊢   φ   →   E  ∈   𝒫  V           
					 
					
						1hegrvtxdg1.i    ⊢   φ   →     iEdg   ⁡  G   =    A  E             
					 
					
						1hegrvtxdg1.e    ⊢   φ   →    B  C    ⊆  E         
					 
					
						1hegrvtxdg1.v    ⊢   φ   →     Vtx   ⁡  G   =  V         
					 
				
					Assertion 
					1hegrvtxdg1    ⊢   φ   →      VtxDeg   ⁡  G   ⁡  B   =   1          
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							1hegrvtxdg1.a   ⊢   φ   →   A  ∈  X         
						
							2 
								
							 
							1hegrvtxdg1.b   ⊢   φ   →   B  ∈  V         
						
							3 
								
							 
							1hegrvtxdg1.c   ⊢   φ   →   C  ∈  V         
						
							4 
								
							 
							1hegrvtxdg1.n   ⊢   φ   →   B  ≠  C         
						
							5 
								
							 
							1hegrvtxdg1.x   ⊢   φ   →   E  ∈   𝒫  V           
						
							6 
								
							 
							1hegrvtxdg1.i   ⊢   φ   →     iEdg   ⁡  G   =    A  E             
						
							7 
								
							 
							1hegrvtxdg1.e   ⊢   φ   →    B  C    ⊆  E         
						
							8 
								
							 
							1hegrvtxdg1.v   ⊢   φ   →     Vtx   ⁡  G   =  V         
						
							9 
								
							 
							prid1g   ⊢   B  ∈  V    →   B  ∈   B  C           
						
							10 
								2  9 
							 
							syl   ⊢   φ   →   B  ∈   B  C           
						
							11 
								7  10 
							 
							sseldd   ⊢   φ   →   B  ∈  E         
						
							12 
								
							 
							prid2g   ⊢   C  ∈  V    →   C  ∈   B  C           
						
							13 
								3  12 
							 
							syl   ⊢   φ   →   C  ∈   B  C           
						
							14 
								7  13 
							 
							sseldd   ⊢   φ   →   C  ∈  E         
						
							15 
								5  11  14  4 
							 
							nehash2   ⊢   φ   →    2   ≤  E        
						
							16 
								6  8  1  2  5  11  15 
							 
							1hevtxdg1   ⊢   φ   →      VtxDeg   ⁡  G   ⁡  B   =   1