Metamath Proof Explorer


Theorem 1idssfct

Description: The positive divisors of a positive integer include 1 and itself. (Contributed by Paul Chapman, 22-Jun-2011)

Ref Expression
Assertion 1idssfct N1Nn|nN

Proof

Step Hyp Ref Expression
1 1nn 1
2 nnz NN
3 1dvds N1N
4 2 3 syl N1N
5 breq1 n=1nN1N
6 5 elrab 1n|nN11N
7 6 biimpri 11N1n|nN
8 1 4 7 sylancr N1n|nN
9 iddvds NNN
10 2 9 syl NNN
11 breq1 n=NnNNN
12 11 elrab Nn|nNNNN
13 12 biimpri NNNNn|nN
14 10 13 mpdan NNn|nN
15 8 14 prssd N1Nn|nN