Description: Lemma for isprm2 . (Contributed by Paul Chapman, 22-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | isprm2lem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr | |
|
2 | 1 | necomd | |
3 | simpr | |
|
4 | nnz | |
|
5 | 1dvds | |
|
6 | 4 5 | syl | |
7 | 6 | ad2antrr | |
8 | 1nn | |
|
9 | breq1 | |
|
10 | 9 | elrab3 | |
11 | 8 10 | ax-mp | |
12 | 7 11 | sylibr | |
13 | iddvds | |
|
14 | 4 13 | syl | |
15 | 14 | ad2antrr | |
16 | breq1 | |
|
17 | 16 | elrab3 | |
18 | 17 | ad2antrr | |
19 | 15 18 | mpbird | |
20 | en2eqpr | |
|
21 | 3 12 19 20 | syl3anc | |
22 | 2 21 | mpd | |
23 | 22 | ex | |
24 | necom | |
|
25 | pr2ne | |
|
26 | 8 25 | mpan | |
27 | 26 | biimpar | |
28 | 24 27 | sylan2br | |
29 | breq1 | |
|
30 | 28 29 | syl5ibrcom | |
31 | 23 30 | impbid | |