Metamath Proof Explorer


Theorem isprm2lem

Description: Lemma for isprm2 . (Contributed by Paul Chapman, 22-Jun-2011)

Ref Expression
Assertion isprm2lem PP1n|nP2𝑜n|nP=1P

Proof

Step Hyp Ref Expression
1 simplr PP1n|nP2𝑜P1
2 1 necomd PP1n|nP2𝑜1P
3 simpr PP1n|nP2𝑜n|nP2𝑜
4 nnz PP
5 1dvds P1P
6 4 5 syl P1P
7 6 ad2antrr PP1n|nP2𝑜1P
8 1nn 1
9 breq1 n=1nP1P
10 9 elrab3 11n|nP1P
11 8 10 ax-mp 1n|nP1P
12 7 11 sylibr PP1n|nP2𝑜1n|nP
13 iddvds PPP
14 4 13 syl PPP
15 14 ad2antrr PP1n|nP2𝑜PP
16 breq1 n=PnPPP
17 16 elrab3 PPn|nPPP
18 17 ad2antrr PP1n|nP2𝑜Pn|nPPP
19 15 18 mpbird PP1n|nP2𝑜Pn|nP
20 en2eqpr n|nP2𝑜1n|nPPn|nP1Pn|nP=1P
21 3 12 19 20 syl3anc PP1n|nP2𝑜1Pn|nP=1P
22 2 21 mpd PP1n|nP2𝑜n|nP=1P
23 22 ex PP1n|nP2𝑜n|nP=1P
24 necom 1PP1
25 pr2ne 1P1P2𝑜1P
26 8 25 mpan P1P2𝑜1P
27 26 biimpar P1P1P2𝑜
28 24 27 sylan2br PP11P2𝑜
29 breq1 n|nP=1Pn|nP2𝑜1P2𝑜
30 28 29 syl5ibrcom PP1n|nP=1Pn|nP2𝑜
31 23 30 impbid PP1n|nP2𝑜n|nP=1P