Metamath Proof Explorer
		
		
		
		Description:  1 is an odd number.  (Contributed by AV, 3-Feb-2020)  (Revised by AV, 18-Jun-2020)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | 1oddALTV |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1z |  | 
						
							| 2 |  | 1p1e2 |  | 
						
							| 3 | 2 | oveq1i |  | 
						
							| 4 |  | 2div2e1 |  | 
						
							| 5 | 3 4 | eqtri |  | 
						
							| 6 | 5 1 | eqeltri |  | 
						
							| 7 |  | isodd |  | 
						
							| 8 | 1 6 7 | mpbir2an |  |