Metamath Proof Explorer


Theorem 1stf2

Description: Value of the first projection on a morphism. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses 1stfval.t T = C × c D
1stfval.b B = Base T
1stfval.h H = Hom T
1stfval.c φ C Cat
1stfval.d φ D Cat
1stfval.p P = C 1 st F D
1stf1.p φ R B
1stf2.p φ S B
Assertion 1stf2 φ R 2 nd P S = 1 st R H S

Proof

Step Hyp Ref Expression
1 1stfval.t T = C × c D
2 1stfval.b B = Base T
3 1stfval.h H = Hom T
4 1stfval.c φ C Cat
5 1stfval.d φ D Cat
6 1stfval.p P = C 1 st F D
7 1stf1.p φ R B
8 1stf2.p φ S B
9 1 2 3 4 5 6 1stfval φ P = 1 st B x B , y B 1 st x H y
10 fo1st 1 st : V onto V
11 fofun 1 st : V onto V Fun 1 st
12 10 11 ax-mp Fun 1 st
13 2 fvexi B V
14 resfunexg Fun 1 st B V 1 st B V
15 12 13 14 mp2an 1 st B V
16 13 13 mpoex x B , y B 1 st x H y V
17 15 16 op2ndd P = 1 st B x B , y B 1 st x H y 2 nd P = x B , y B 1 st x H y
18 9 17 syl φ 2 nd P = x B , y B 1 st x H y
19 simprl φ x = R y = S x = R
20 simprr φ x = R y = S y = S
21 19 20 oveq12d φ x = R y = S x H y = R H S
22 21 reseq2d φ x = R y = S 1 st x H y = 1 st R H S
23 ovex R H S V
24 resfunexg Fun 1 st R H S V 1 st R H S V
25 12 23 24 mp2an 1 st R H S V
26 25 a1i φ 1 st R H S V
27 18 22 7 8 26 ovmpod φ R 2 nd P S = 1 st R H S