Metamath Proof Explorer


Theorem 1stf2

Description: Value of the first projection on a morphism. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses 1stfval.t T=C×cD
1stfval.b B=BaseT
1stfval.h H=HomT
1stfval.c φCCat
1stfval.d φDCat
1stfval.p P=C1stFD
1stf1.p φRB
1stf2.p φSB
Assertion 1stf2 φR2ndPS=1stRHS

Proof

Step Hyp Ref Expression
1 1stfval.t T=C×cD
2 1stfval.b B=BaseT
3 1stfval.h H=HomT
4 1stfval.c φCCat
5 1stfval.d φDCat
6 1stfval.p P=C1stFD
7 1stf1.p φRB
8 1stf2.p φSB
9 1 2 3 4 5 6 1stfval φP=1stBxB,yB1stxHy
10 fo1st 1st:VontoV
11 fofun 1st:VontoVFun1st
12 10 11 ax-mp Fun1st
13 2 fvexi BV
14 resfunexg Fun1stBV1stBV
15 12 13 14 mp2an 1stBV
16 13 13 mpoex xB,yB1stxHyV
17 15 16 op2ndd P=1stBxB,yB1stxHy2ndP=xB,yB1stxHy
18 9 17 syl φ2ndP=xB,yB1stxHy
19 simprl φx=Ry=Sx=R
20 simprr φx=Ry=Sy=S
21 19 20 oveq12d φx=Ry=SxHy=RHS
22 21 reseq2d φx=Ry=S1stxHy=1stRHS
23 ovex RHSV
24 resfunexg Fun1stRHSV1stRHSV
25 12 23 24 mp2an 1stRHSV
26 25 a1i φ1stRHSV
27 18 22 7 8 26 ovmpod φR2ndPS=1stRHS