Metamath Proof Explorer


Theorem 2addsubd

Description: Law for subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses negidd.1 φA
pncand.2 φB
subaddd.3 φC
addsub4d.4 φD
Assertion 2addsubd φA+B+C-D=A+C-D+B

Proof

Step Hyp Ref Expression
1 negidd.1 φA
2 pncand.2 φB
3 subaddd.3 φC
4 addsub4d.4 φD
5 2addsub ABCDA+B+C-D=A+C-D+B
6 1 2 3 4 5 syl22anc φA+B+C-D=A+C-D+B