Metamath Proof Explorer


Theorem 2addsub

Description: Law for subtraction and addition. (Contributed by NM, 20-Nov-2005)

Ref Expression
Assertion 2addsub ABCDA+B+C-D=A+C-D+B

Proof

Step Hyp Ref Expression
1 add32 ABCA+B+C=A+C+B
2 1 3expa ABCA+B+C=A+C+B
3 2 adantrr ABCDA+B+C=A+C+B
4 3 oveq1d ABCDA+B+C-D=A+C+B-D
5 addcl ACA+C
6 addsub A+CBDA+C+B-D=A+C-D+B
7 6 3expb A+CBDA+C+B-D=A+C-D+B
8 5 7 sylan ACBDA+C+B-D=A+C-D+B
9 8 an4s ABCDA+C+B-D=A+C-D+B
10 4 9 eqtrd ABCDA+B+C-D=A+C-D+B