Metamath Proof Explorer


Theorem 2atjlej

Description: Two atoms are different if their join majorizes the join of two different atoms. (Contributed by NM, 4-Jun-2013)

Ref Expression
Hypotheses ps1.l ˙=K
ps1.j ˙=joinK
ps1.a A=AtomsK
Assertion 2atjlej KHLPAQAPQRASAP˙Q˙R˙SRS

Proof

Step Hyp Ref Expression
1 ps1.l ˙=K
2 ps1.j ˙=joinK
3 ps1.a A=AtomsK
4 simp33 KHLPAQAPQRASAP˙Q˙R˙SP˙Q˙R˙S
5 simp1 KHLPAQAPQRASAP˙Q˙R˙SKHL
6 simp21 KHLPAQAPQRASAP˙Q˙R˙SPA
7 simp22 KHLPAQAPQRASAP˙Q˙R˙SQA
8 simp23 KHLPAQAPQRASAP˙Q˙R˙SPQ
9 simp31 KHLPAQAPQRASAP˙Q˙R˙SRA
10 simp32 KHLPAQAPQRASAP˙Q˙R˙SSA
11 1 2 3 ps-1 KHLPAQAPQRASAP˙Q˙R˙SP˙Q=R˙S
12 5 6 7 8 9 10 11 syl132anc KHLPAQAPQRASAP˙Q˙R˙SP˙Q˙R˙SP˙Q=R˙S
13 4 12 mpbid KHLPAQAPQRASAP˙Q˙R˙SP˙Q=R˙S
14 2 3 lnnat KHLPAQAPQ¬P˙QA
15 5 6 7 14 syl3anc KHLPAQAPQRASAP˙Q˙R˙SPQ¬P˙QA
16 8 15 mpbid KHLPAQAPQRASAP˙Q˙R˙S¬P˙QA
17 13 16 eqneltrrd KHLPAQAPQRASAP˙Q˙R˙S¬R˙SA
18 2 3 lnnat KHLRASARS¬R˙SA
19 5 9 10 18 syl3anc KHLPAQAPQRASAP˙Q˙R˙SRS¬R˙SA
20 17 19 mpbird KHLPAQAPQRASAP˙Q˙R˙SRS