Metamath Proof Explorer


Theorem 2eu7

Description: Two equivalent expressions for double existential uniqueness. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 19-Feb-2005) (New usage is discouraged.)

Ref Expression
Assertion 2eu7 ∃!xyφ∃!yxφ∃!x∃!yxφyφ

Proof

Step Hyp Ref Expression
1 nfe1 xxφ
2 1 nfeu x∃!yxφ
3 2 euan ∃!x∃!yxφyφ∃!yxφ∃!xyφ
4 ancom xφyφyφxφ
5 4 eubii ∃!yxφyφ∃!yyφxφ
6 nfe1 yyφ
7 6 euan ∃!yyφxφyφ∃!yxφ
8 ancom yφ∃!yxφ∃!yxφyφ
9 5 7 8 3bitri ∃!yxφyφ∃!yxφyφ
10 9 eubii ∃!x∃!yxφyφ∃!x∃!yxφyφ
11 ancom ∃!xyφ∃!yxφ∃!yxφ∃!xyφ
12 3 10 11 3bitr4ri ∃!xyφ∃!yxφ∃!x∃!yxφyφ