Metamath Proof Explorer


Theorem 2eu8

Description: Two equivalent expressions for double existential uniqueness. Curiously, we can put E! on either of the internal conjuncts but not both. We can also commute E! x E! y using 2eu7 . Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 20-Feb-2005) (New usage is discouraged.)

Ref Expression
Assertion 2eu8 ∃!x∃!yxφyφ∃!x∃!y∃!xφyφ

Proof

Step Hyp Ref Expression
1 2eu2 ∃!xyφ∃!y∃!xφ∃!yxφ
2 1 pm5.32i ∃!xyφ∃!y∃!xφ∃!xyφ∃!yxφ
3 nfeu1 x∃!xφ
4 3 nfeu x∃!y∃!xφ
5 4 euan ∃!x∃!y∃!xφyφ∃!y∃!xφ∃!xyφ
6 ancom ∃!xφyφyφ∃!xφ
7 6 eubii ∃!y∃!xφyφ∃!yyφ∃!xφ
8 nfe1 yyφ
9 8 euan ∃!yyφ∃!xφyφ∃!y∃!xφ
10 ancom yφ∃!y∃!xφ∃!y∃!xφyφ
11 7 9 10 3bitri ∃!y∃!xφyφ∃!y∃!xφyφ
12 11 eubii ∃!x∃!y∃!xφyφ∃!x∃!y∃!xφyφ
13 ancom ∃!xyφ∃!y∃!xφ∃!y∃!xφ∃!xyφ
14 5 12 13 3bitr4ri ∃!xyφ∃!y∃!xφ∃!x∃!y∃!xφyφ
15 2eu7 ∃!xyφ∃!yxφ∃!x∃!yxφyφ
16 2 14 15 3bitr3ri ∃!x∃!yxφyφ∃!x∃!y∃!xφyφ