Metamath Proof Explorer


Theorem 2exp11

Description: Two to the eleventh power is 2048. (Contributed by AV, 16-Aug-2021)

Ref Expression
Assertion 2exp11 211=2048

Proof

Step Hyp Ref Expression
1 8p3e11 8+3=11
2 1 eqcomi 11=8+3
3 2 oveq2i 211=28+3
4 2cn 2
5 8nn0 80
6 3nn0 30
7 expadd 2803028+3=2823
8 4 5 6 7 mp3an 28+3=2823
9 3 8 eqtri 211=2823
10 2exp8 28=256
11 cu2 23=8
12 10 11 oveq12i 2823=2568
13 2nn0 20
14 5nn0 50
15 13 14 deccl 250
16 6nn0 60
17 eqid 256=256
18 4nn0 40
19 0nn0 00
20 13 19 deccl 200
21 eqid 25=25
22 1nn0 10
23 8cn 8
24 8t2e16 82=16
25 23 4 24 mulcomli 28=16
26 1p1e2 1+1=2
27 6p4e10 6+4=10
28 22 16 18 25 26 19 27 decaddci 28+4=20
29 5cn 5
30 8t5e40 85=40
31 23 29 30 mulcomli 58=40
32 5 13 14 21 19 18 28 31 decmul1c 258=200
33 4cn 4
34 33 addlidi 0+4=4
35 20 19 18 32 34 decaddi 258+4=204
36 6cn 6
37 8t6e48 86=48
38 23 36 37 mulcomli 68=48
39 5 15 16 17 5 18 35 38 decmul1c 2568=2048
40 12 39 eqtri 2823=2048
41 9 40 eqtri 211=2048