Step |
Hyp |
Ref |
Expression |
1 |
|
8p3e11 |
⊢ ( 8 + 3 ) = ; 1 1 |
2 |
1
|
eqcomi |
⊢ ; 1 1 = ( 8 + 3 ) |
3 |
2
|
oveq2i |
⊢ ( 2 ↑ ; 1 1 ) = ( 2 ↑ ( 8 + 3 ) ) |
4 |
|
2cn |
⊢ 2 ∈ ℂ |
5 |
|
8nn0 |
⊢ 8 ∈ ℕ0 |
6 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
7 |
|
expadd |
⊢ ( ( 2 ∈ ℂ ∧ 8 ∈ ℕ0 ∧ 3 ∈ ℕ0 ) → ( 2 ↑ ( 8 + 3 ) ) = ( ( 2 ↑ 8 ) · ( 2 ↑ 3 ) ) ) |
8 |
4 5 6 7
|
mp3an |
⊢ ( 2 ↑ ( 8 + 3 ) ) = ( ( 2 ↑ 8 ) · ( 2 ↑ 3 ) ) |
9 |
3 8
|
eqtri |
⊢ ( 2 ↑ ; 1 1 ) = ( ( 2 ↑ 8 ) · ( 2 ↑ 3 ) ) |
10 |
|
2exp8 |
⊢ ( 2 ↑ 8 ) = ; ; 2 5 6 |
11 |
|
cu2 |
⊢ ( 2 ↑ 3 ) = 8 |
12 |
10 11
|
oveq12i |
⊢ ( ( 2 ↑ 8 ) · ( 2 ↑ 3 ) ) = ( ; ; 2 5 6 · 8 ) |
13 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
14 |
|
5nn0 |
⊢ 5 ∈ ℕ0 |
15 |
13 14
|
deccl |
⊢ ; 2 5 ∈ ℕ0 |
16 |
|
6nn0 |
⊢ 6 ∈ ℕ0 |
17 |
|
eqid |
⊢ ; ; 2 5 6 = ; ; 2 5 6 |
18 |
|
4nn0 |
⊢ 4 ∈ ℕ0 |
19 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
20 |
13 19
|
deccl |
⊢ ; 2 0 ∈ ℕ0 |
21 |
|
eqid |
⊢ ; 2 5 = ; 2 5 |
22 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
23 |
|
8cn |
⊢ 8 ∈ ℂ |
24 |
|
8t2e16 |
⊢ ( 8 · 2 ) = ; 1 6 |
25 |
23 4 24
|
mulcomli |
⊢ ( 2 · 8 ) = ; 1 6 |
26 |
|
1p1e2 |
⊢ ( 1 + 1 ) = 2 |
27 |
|
6p4e10 |
⊢ ( 6 + 4 ) = ; 1 0 |
28 |
22 16 18 25 26 19 27
|
decaddci |
⊢ ( ( 2 · 8 ) + 4 ) = ; 2 0 |
29 |
|
5cn |
⊢ 5 ∈ ℂ |
30 |
|
8t5e40 |
⊢ ( 8 · 5 ) = ; 4 0 |
31 |
23 29 30
|
mulcomli |
⊢ ( 5 · 8 ) = ; 4 0 |
32 |
5 13 14 21 19 18 28 31
|
decmul1c |
⊢ ( ; 2 5 · 8 ) = ; ; 2 0 0 |
33 |
|
4cn |
⊢ 4 ∈ ℂ |
34 |
33
|
addlidi |
⊢ ( 0 + 4 ) = 4 |
35 |
20 19 18 32 34
|
decaddi |
⊢ ( ( ; 2 5 · 8 ) + 4 ) = ; ; 2 0 4 |
36 |
|
6cn |
⊢ 6 ∈ ℂ |
37 |
|
8t6e48 |
⊢ ( 8 · 6 ) = ; 4 8 |
38 |
23 36 37
|
mulcomli |
⊢ ( 6 · 8 ) = ; 4 8 |
39 |
5 15 16 17 5 18 35 38
|
decmul1c |
⊢ ( ; ; 2 5 6 · 8 ) = ; ; ; 2 0 4 8 |
40 |
12 39
|
eqtri |
⊢ ( ( 2 ↑ 8 ) · ( 2 ↑ 3 ) ) = ; ; ; 2 0 4 8 |
41 |
9 40
|
eqtri |
⊢ ( 2 ↑ ; 1 1 ) = ; ; ; 2 0 4 8 |