Metamath Proof Explorer


Theorem 2ndf2

Description: Value of the first projection on a morphism. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses 1stfval.t T=C×cD
1stfval.b B=BaseT
1stfval.h H=HomT
1stfval.c φCCat
1stfval.d φDCat
2ndfval.p Q=C2ndFD
2ndf1.p φRB
2ndf2.p φSB
Assertion 2ndf2 φR2ndQS=2ndRHS

Proof

Step Hyp Ref Expression
1 1stfval.t T=C×cD
2 1stfval.b B=BaseT
3 1stfval.h H=HomT
4 1stfval.c φCCat
5 1stfval.d φDCat
6 2ndfval.p Q=C2ndFD
7 2ndf1.p φRB
8 2ndf2.p φSB
9 1 2 3 4 5 6 2ndfval φQ=2ndBxB,yB2ndxHy
10 fo2nd 2nd:VontoV
11 fofun 2nd:VontoVFun2nd
12 10 11 ax-mp Fun2nd
13 2 fvexi BV
14 resfunexg Fun2ndBV2ndBV
15 12 13 14 mp2an 2ndBV
16 13 13 mpoex xB,yB2ndxHyV
17 15 16 op2ndd Q=2ndBxB,yB2ndxHy2ndQ=xB,yB2ndxHy
18 9 17 syl φ2ndQ=xB,yB2ndxHy
19 simprl φx=Ry=Sx=R
20 simprr φx=Ry=Sy=S
21 19 20 oveq12d φx=Ry=SxHy=RHS
22 21 reseq2d φx=Ry=S2ndxHy=2ndRHS
23 ovex RHSV
24 resfunexg Fun2ndRHSV2ndRHSV
25 12 23 24 mp2an 2ndRHSV
26 25 a1i φ2ndRHSV
27 18 22 7 8 26 ovmpod φR2ndQS=2ndRHS