Metamath Proof Explorer


Theorem 2omomeqom

Description: Ordinal two times omega is omega. Lemma 3.17 of Schloeder p. 10. (Contributed by RP, 30-Jan-2025)

Ref Expression
Assertion 2omomeqom 2𝑜𝑜ω=ω

Proof

Step Hyp Ref Expression
1 omelon ωOn
2 2onn 2𝑜ω
3 0ex V
4 3 prid1
5 df2o2 2𝑜=
6 4 5 eleqtrri 2𝑜
7 omabslem ωOn2𝑜ω2𝑜2𝑜𝑜ω=ω
8 1 2 6 7 mp3an 2𝑜𝑜ω=ω