Metamath Proof Explorer


Theorem 2pwne

Description: No set equals the power set of its power set. (Contributed by NM, 17-Nov-2008)

Ref Expression
Assertion 2pwne AV𝒫𝒫AA

Proof

Step Hyp Ref Expression
1 sdomirr ¬𝒫𝒫A𝒫𝒫A
2 canth2g AVA𝒫A
3 pwexg AV𝒫AV
4 canth2g 𝒫AV𝒫A𝒫𝒫A
5 3 4 syl AV𝒫A𝒫𝒫A
6 sdomtr A𝒫A𝒫A𝒫𝒫AA𝒫𝒫A
7 2 5 6 syl2anc AVA𝒫𝒫A
8 breq1 𝒫𝒫A=A𝒫𝒫A𝒫𝒫AA𝒫𝒫A
9 7 8 syl5ibrcom AV𝒫𝒫A=A𝒫𝒫A𝒫𝒫A
10 1 9 mtoi AV¬𝒫𝒫A=A
11 10 neqned AV𝒫𝒫AA