Metamath Proof Explorer


Theorem disjen

Description: A stronger form of pwuninel . We can use pwuninel , 2pwuninel to create one or two sets disjoint from a given set A , but here we show that in fact such constructions exist for arbitrarily large disjoint extensions, which is to say that for any set B we can construct a set x that is equinumerous to it and disjoint from A . (Contributed by Mario Carneiro, 7-Feb-2015)

Ref Expression
Assertion disjen AVBWAB×𝒫ranA=B×𝒫ranAB

Proof

Step Hyp Ref Expression
1 1st2nd2 xB×𝒫ranAx=1stx2ndx
2 1 ad2antll AVBWxAxB×𝒫ranAx=1stx2ndx
3 simprl AVBWxAxB×𝒫ranAxA
4 2 3 eqeltrrd AVBWxAxB×𝒫ranA1stx2ndxA
5 fvex 1stxV
6 fvex 2ndxV
7 5 6 opelrn 1stx2ndxA2ndxranA
8 4 7 syl AVBWxAxB×𝒫ranA2ndxranA
9 pwuninel ¬𝒫ranAranA
10 xp2nd xB×𝒫ranA2ndx𝒫ranA
11 10 ad2antll AVBWxAxB×𝒫ranA2ndx𝒫ranA
12 elsni 2ndx𝒫ranA2ndx=𝒫ranA
13 11 12 syl AVBWxAxB×𝒫ranA2ndx=𝒫ranA
14 13 eleq1d AVBWxAxB×𝒫ranA2ndxranA𝒫ranAranA
15 9 14 mtbiri AVBWxAxB×𝒫ranA¬2ndxranA
16 8 15 pm2.65da AVBW¬xAxB×𝒫ranA
17 elin xAB×𝒫ranAxAxB×𝒫ranA
18 16 17 sylnibr AVBW¬xAB×𝒫ranA
19 18 eq0rdv AVBWAB×𝒫ranA=
20 simpr AVBWBW
21 rnexg AVranAV
22 21 adantr AVBWranAV
23 uniexg ranAVranAV
24 pwexg ranAV𝒫ranAV
25 22 23 24 3syl AVBW𝒫ranAV
26 xpsneng BW𝒫ranAVB×𝒫ranAB
27 20 25 26 syl2anc AVBWB×𝒫ranAB
28 19 27 jca AVBWAB×𝒫ranA=B×𝒫ranAB