Metamath Proof Explorer


Theorem 2ralbiim

Description: Split a biconditional and distribute two restricted universal quantifiers, analogous to 2albiim and ralbiim . (Contributed by Alexander van der Vekens, 2-Jul-2017)

Ref Expression
Assertion 2ralbiim xAyBφψxAyBφψxAyBψφ

Proof

Step Hyp Ref Expression
1 ralbiim yBφψyBφψyBψφ
2 1 ralbii xAyBφψxAyBφψyBψφ
3 r19.26 xAyBφψyBψφxAyBφψxAyBψφ
4 2 3 bitri xAyBφψxAyBφψxAyBψφ