Metamath Proof Explorer


Theorem 2ralorOLD

Description: Obsolete version of 2ralor as of 20-Nov-2024. (Contributed by Jeff Madsen, 19-Jun-2010) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion 2ralorOLD xAyBφψxAφyBψ

Proof

Step Hyp Ref Expression
1 rexnal xA¬φ¬xAφ
2 rexnal yB¬ψ¬yBψ
3 1 2 anbi12i xA¬φyB¬ψ¬xAφ¬yBψ
4 ioran ¬φψ¬φ¬ψ
5 4 rexbii yB¬φψyB¬φ¬ψ
6 rexnal yB¬φψ¬yBφψ
7 5 6 bitr3i yB¬φ¬ψ¬yBφψ
8 7 rexbii xAyB¬φ¬ψxA¬yBφψ
9 reeanv xAyB¬φ¬ψxA¬φyB¬ψ
10 rexnal xA¬yBφψ¬xAyBφψ
11 8 9 10 3bitr3ri ¬xAyBφψxA¬φyB¬ψ
12 ioran ¬xAφyBψ¬xAφ¬yBψ
13 3 11 12 3bitr4i ¬xAyBφψ¬xAφyBψ
14 13 con4bii xAyBφψxAφyBψ