Metamath Proof Explorer


Theorem 2rexsb

Description: An equivalent expression for double restricted existence, analogous to rexsb . (Contributed by Alexander van der Vekens, 1-Jul-2017)

Ref Expression
Assertion 2rexsb xAyBφzAwBxyx=zy=wφ

Proof

Step Hyp Ref Expression
1 rexsb yBφwByy=wφ
2 1 rexbii xAyBφxAwByy=wφ
3 rexcom xAwByy=wφwBxAyy=wφ
4 2 3 bitri xAyBφwBxAyy=wφ
5 rexsb xAyy=wφzAxx=zyy=wφ
6 impexp x=zy=wφx=zy=wφ
7 6 albii yx=zy=wφyx=zy=wφ
8 19.21v yx=zy=wφx=zyy=wφ
9 7 8 bitr2i x=zyy=wφyx=zy=wφ
10 9 albii xx=zyy=wφxyx=zy=wφ
11 10 rexbii zAxx=zyy=wφzAxyx=zy=wφ
12 5 11 bitri xAyy=wφzAxyx=zy=wφ
13 12 rexbii wBxAyy=wφwBzAxyx=zy=wφ
14 rexcom wBzAxyx=zy=wφzAwBxyx=zy=wφ
15 13 14 bitri wBxAyy=wφzAwBxyx=zy=wφ
16 4 15 bitri xAyBφzAwBxyx=zy=wφ