Metamath Proof Explorer


Theorem 2sb5ndALT

Description: Equivalence for double substitution 2sb5 without distinct x , y requirement. 2sb5nd is derived from 2sb5ndVD . The proof is derived by completeusersproof.c from User's Proof in VirtualDeductionProofs.txt. The User's Proof in html format is displayed in 2sb5ndVD . (Contributed by Alan Sare, 19-Sep-2016) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion 2sb5ndALT ¬xx=yu=vuxvyφxyx=uy=vφ

Proof

Step Hyp Ref Expression
1 ax6e2ndeq ¬xx=yu=vxyx=uy=v
2 anabs5 xyx=uy=vxyx=uy=vuxvyφxyx=uy=vuxvyφ
3 2pm13.193 x=uy=vuxvyφx=uy=vφ
4 3 exbii yx=uy=vuxvyφyx=uy=vφ
5 hbs1 uxvyφxuxvyφ
6 id xx=yxx=y
7 axc11 xx=yxuxvyφyuxvyφ
8 6 7 syl xx=yxuxvyφyuxvyφ
9 pm3.33 uxvyφxuxvyφxuxvyφyuxvyφuxvyφyuxvyφ
10 5 8 9 sylancr xx=yuxvyφyuxvyφ
11 hbs1 vyφyvyφ
12 11 sbt uxvyφyvyφ
13 sbi1 uxvyφyvyφuxvyφuxyvyφ
14 12 13 ax-mp uxvyφuxyvyφ
15 id ¬xx=y¬xx=y
16 axc11n yy=xxx=y
17 16 con3i ¬xx=y¬yy=x
18 15 17 syl ¬xx=y¬yy=x
19 sbal2 ¬yy=xuxyvyφyuxvyφ
20 18 19 syl ¬xx=yuxyvyφyuxvyφ
21 imbi2 uxyvyφyuxvyφuxvyφuxyvyφuxvyφyuxvyφ
22 21 biimpac uxvyφuxyvyφuxyvyφyuxvyφuxvyφyuxvyφ
23 14 20 22 sylancr ¬xx=yuxvyφyuxvyφ
24 10 23 pm2.61i uxvyφyuxvyφ
25 24 nf5i yuxvyφ
26 25 19.41 yx=uy=vuxvyφyx=uy=vuxvyφ
27 4 26 bitr3i yx=uy=vφyx=uy=vuxvyφ
28 27 exbii xyx=uy=vφxyx=uy=vuxvyφ
29 nfs1v xuxvyφ
30 29 19.41 xyx=uy=vuxvyφxyx=uy=vuxvyφ
31 28 30 bitr2i xyx=uy=vuxvyφxyx=uy=vφ
32 31 anbi2i xyx=uy=vxyx=uy=vuxvyφxyx=uy=vxyx=uy=vφ
33 2 32 bitr3i xyx=uy=vuxvyφxyx=uy=vxyx=uy=vφ
34 pm5.32 xyx=uy=vuxvyφxyx=uy=vφxyx=uy=vuxvyφxyx=uy=vxyx=uy=vφ
35 33 34 mpbir xyx=uy=vuxvyφxyx=uy=vφ
36 1 35 sylbi ¬xx=yu=vuxvyφxyx=uy=vφ