| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chordthmALT.angdef |
|
| 2 |
|
chordthmALT.A |
|
| 3 |
|
chordthmALT.B |
|
| 4 |
|
chordthmALT.C |
|
| 5 |
|
chordthmALT.D |
|
| 6 |
|
chordthmALT.P |
|
| 7 |
|
chordthmALT.AneP |
|
| 8 |
|
chordthmALT.BneP |
|
| 9 |
|
chordthmALT.CneP |
|
| 10 |
|
chordthmALT.DneP |
|
| 11 |
|
chordthmALT.APB |
|
| 12 |
|
chordthmALT.CPD |
|
| 13 |
|
chordthmALT.Q |
|
| 14 |
|
chordthmALT.ABcirc |
|
| 15 |
|
chordthmALT.ACcirc |
|
| 16 |
|
chordthmALT.ADcirc |
|
| 17 |
10
|
necomd |
|
| 18 |
1 4 6 5 9 17
|
angpieqvd |
|
| 19 |
12 18
|
mpbid |
|
| 20 |
|
df-rex |
|
| 21 |
20
|
biimpi |
|
| 22 |
19 21
|
syl |
|
| 23 |
8
|
necomd |
|
| 24 |
1 2 6 3 7 23
|
angpieqvd |
|
| 25 |
11 24
|
mpbid |
|
| 26 |
|
df-rex |
|
| 27 |
26
|
biimpi |
|
| 28 |
25 27
|
syl |
|
| 29 |
28
|
adantr |
|
| 30 |
14 16
|
eqtr3d |
|
| 31 |
30
|
oveq1d |
|
| 32 |
31
|
oveq1d |
|
| 33 |
32
|
3ad2ant1 |
|
| 34 |
2
|
3ad2ant1 |
|
| 35 |
3
|
3ad2ant1 |
|
| 36 |
13
|
3ad2ant1 |
|
| 37 |
|
ioossicc |
|
| 38 |
|
id |
|
| 39 |
37 38
|
sselid |
|
| 40 |
39
|
3ad2ant2 |
|
| 41 |
|
id |
|
| 42 |
41
|
3ad2ant3 |
|
| 43 |
14
|
3ad2ant1 |
|
| 44 |
34 35 36 40 42 43
|
chordthmlem5 |
|
| 45 |
44
|
3expb |
|
| 46 |
45
|
3adant2 |
|
| 47 |
4
|
3ad2ant1 |
|
| 48 |
5
|
3ad2ant1 |
|
| 49 |
13
|
3ad2ant1 |
|
| 50 |
|
id |
|
| 51 |
37 50
|
sselid |
|
| 52 |
51
|
3ad2ant2 |
|
| 53 |
|
id |
|
| 54 |
53
|
3ad2ant3 |
|
| 55 |
15 16
|
eqtr3d |
|
| 56 |
55
|
3ad2ant1 |
|
| 57 |
47 48 49 52 54 56
|
chordthmlem5 |
|
| 58 |
57
|
3expb |
|
| 59 |
58
|
3adant3 |
|
| 60 |
33 46 59
|
3eqtr4d |
|
| 61 |
60
|
3expia |
|
| 62 |
61
|
exlimdv |
|
| 63 |
29 62
|
mpd |
|
| 64 |
63
|
ex |
|
| 65 |
64
|
exlimdv |
|
| 66 |
22 65
|
mpd |
|