| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chordthmlem5.A |
|
| 2 |
|
chordthmlem5.B |
|
| 3 |
|
chordthmlem5.Q |
|
| 4 |
|
chordthmlem5.X |
|
| 5 |
|
chordthmlem5.P |
|
| 6 |
|
chordthmlem5.ABequidistQ |
|
| 7 |
1 2
|
addcld |
|
| 8 |
7
|
halfcld |
|
| 9 |
3 8
|
subcld |
|
| 10 |
9
|
abscld |
|
| 11 |
10
|
recnd |
|
| 12 |
11
|
sqcld |
|
| 13 |
2 8
|
subcld |
|
| 14 |
13
|
abscld |
|
| 15 |
14
|
recnd |
|
| 16 |
15
|
sqcld |
|
| 17 |
|
unitssre |
|
| 18 |
17 4
|
sselid |
|
| 19 |
18
|
recnd |
|
| 20 |
19 1
|
mulcld |
|
| 21 |
|
1cnd |
|
| 22 |
21 19
|
subcld |
|
| 23 |
22 2
|
mulcld |
|
| 24 |
20 23
|
addcld |
|
| 25 |
5 24
|
eqeltrd |
|
| 26 |
25 8
|
subcld |
|
| 27 |
26
|
abscld |
|
| 28 |
27
|
recnd |
|
| 29 |
28
|
sqcld |
|
| 30 |
12 16 29
|
pnpcand |
|
| 31 |
|
0red |
|
| 32 |
|
eqidd |
|
| 33 |
1
|
mul02d |
|
| 34 |
21
|
subid1d |
|
| 35 |
34
|
oveq1d |
|
| 36 |
2
|
mullidd |
|
| 37 |
35 36
|
eqtrd |
|
| 38 |
33 37
|
oveq12d |
|
| 39 |
2
|
addlidd |
|
| 40 |
38 39
|
eqtr2d |
|
| 41 |
1 2 3 31 32 40 6
|
chordthmlem3 |
|
| 42 |
1 2 3 18 32 5 6
|
chordthmlem3 |
|
| 43 |
41 42
|
oveq12d |
|
| 44 |
1 2 4 32 5
|
chordthmlem4 |
|
| 45 |
30 43 44
|
3eqtr4rd |
|