| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chordthmlem5.A |
|- ( ph -> A e. CC ) |
| 2 |
|
chordthmlem5.B |
|- ( ph -> B e. CC ) |
| 3 |
|
chordthmlem5.Q |
|- ( ph -> Q e. CC ) |
| 4 |
|
chordthmlem5.X |
|- ( ph -> X e. ( 0 [,] 1 ) ) |
| 5 |
|
chordthmlem5.P |
|- ( ph -> P = ( ( X x. A ) + ( ( 1 - X ) x. B ) ) ) |
| 6 |
|
chordthmlem5.ABequidistQ |
|- ( ph -> ( abs ` ( A - Q ) ) = ( abs ` ( B - Q ) ) ) |
| 7 |
1 2
|
addcld |
|- ( ph -> ( A + B ) e. CC ) |
| 8 |
7
|
halfcld |
|- ( ph -> ( ( A + B ) / 2 ) e. CC ) |
| 9 |
3 8
|
subcld |
|- ( ph -> ( Q - ( ( A + B ) / 2 ) ) e. CC ) |
| 10 |
9
|
abscld |
|- ( ph -> ( abs ` ( Q - ( ( A + B ) / 2 ) ) ) e. RR ) |
| 11 |
10
|
recnd |
|- ( ph -> ( abs ` ( Q - ( ( A + B ) / 2 ) ) ) e. CC ) |
| 12 |
11
|
sqcld |
|- ( ph -> ( ( abs ` ( Q - ( ( A + B ) / 2 ) ) ) ^ 2 ) e. CC ) |
| 13 |
2 8
|
subcld |
|- ( ph -> ( B - ( ( A + B ) / 2 ) ) e. CC ) |
| 14 |
13
|
abscld |
|- ( ph -> ( abs ` ( B - ( ( A + B ) / 2 ) ) ) e. RR ) |
| 15 |
14
|
recnd |
|- ( ph -> ( abs ` ( B - ( ( A + B ) / 2 ) ) ) e. CC ) |
| 16 |
15
|
sqcld |
|- ( ph -> ( ( abs ` ( B - ( ( A + B ) / 2 ) ) ) ^ 2 ) e. CC ) |
| 17 |
|
unitssre |
|- ( 0 [,] 1 ) C_ RR |
| 18 |
17 4
|
sselid |
|- ( ph -> X e. RR ) |
| 19 |
18
|
recnd |
|- ( ph -> X e. CC ) |
| 20 |
19 1
|
mulcld |
|- ( ph -> ( X x. A ) e. CC ) |
| 21 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 22 |
21 19
|
subcld |
|- ( ph -> ( 1 - X ) e. CC ) |
| 23 |
22 2
|
mulcld |
|- ( ph -> ( ( 1 - X ) x. B ) e. CC ) |
| 24 |
20 23
|
addcld |
|- ( ph -> ( ( X x. A ) + ( ( 1 - X ) x. B ) ) e. CC ) |
| 25 |
5 24
|
eqeltrd |
|- ( ph -> P e. CC ) |
| 26 |
25 8
|
subcld |
|- ( ph -> ( P - ( ( A + B ) / 2 ) ) e. CC ) |
| 27 |
26
|
abscld |
|- ( ph -> ( abs ` ( P - ( ( A + B ) / 2 ) ) ) e. RR ) |
| 28 |
27
|
recnd |
|- ( ph -> ( abs ` ( P - ( ( A + B ) / 2 ) ) ) e. CC ) |
| 29 |
28
|
sqcld |
|- ( ph -> ( ( abs ` ( P - ( ( A + B ) / 2 ) ) ) ^ 2 ) e. CC ) |
| 30 |
12 16 29
|
pnpcand |
|- ( ph -> ( ( ( ( abs ` ( Q - ( ( A + B ) / 2 ) ) ) ^ 2 ) + ( ( abs ` ( B - ( ( A + B ) / 2 ) ) ) ^ 2 ) ) - ( ( ( abs ` ( Q - ( ( A + B ) / 2 ) ) ) ^ 2 ) + ( ( abs ` ( P - ( ( A + B ) / 2 ) ) ) ^ 2 ) ) ) = ( ( ( abs ` ( B - ( ( A + B ) / 2 ) ) ) ^ 2 ) - ( ( abs ` ( P - ( ( A + B ) / 2 ) ) ) ^ 2 ) ) ) |
| 31 |
|
0red |
|- ( ph -> 0 e. RR ) |
| 32 |
|
eqidd |
|- ( ph -> ( ( A + B ) / 2 ) = ( ( A + B ) / 2 ) ) |
| 33 |
1
|
mul02d |
|- ( ph -> ( 0 x. A ) = 0 ) |
| 34 |
21
|
subid1d |
|- ( ph -> ( 1 - 0 ) = 1 ) |
| 35 |
34
|
oveq1d |
|- ( ph -> ( ( 1 - 0 ) x. B ) = ( 1 x. B ) ) |
| 36 |
2
|
mullidd |
|- ( ph -> ( 1 x. B ) = B ) |
| 37 |
35 36
|
eqtrd |
|- ( ph -> ( ( 1 - 0 ) x. B ) = B ) |
| 38 |
33 37
|
oveq12d |
|- ( ph -> ( ( 0 x. A ) + ( ( 1 - 0 ) x. B ) ) = ( 0 + B ) ) |
| 39 |
2
|
addlidd |
|- ( ph -> ( 0 + B ) = B ) |
| 40 |
38 39
|
eqtr2d |
|- ( ph -> B = ( ( 0 x. A ) + ( ( 1 - 0 ) x. B ) ) ) |
| 41 |
1 2 3 31 32 40 6
|
chordthmlem3 |
|- ( ph -> ( ( abs ` ( B - Q ) ) ^ 2 ) = ( ( ( abs ` ( Q - ( ( A + B ) / 2 ) ) ) ^ 2 ) + ( ( abs ` ( B - ( ( A + B ) / 2 ) ) ) ^ 2 ) ) ) |
| 42 |
1 2 3 18 32 5 6
|
chordthmlem3 |
|- ( ph -> ( ( abs ` ( P - Q ) ) ^ 2 ) = ( ( ( abs ` ( Q - ( ( A + B ) / 2 ) ) ) ^ 2 ) + ( ( abs ` ( P - ( ( A + B ) / 2 ) ) ) ^ 2 ) ) ) |
| 43 |
41 42
|
oveq12d |
|- ( ph -> ( ( ( abs ` ( B - Q ) ) ^ 2 ) - ( ( abs ` ( P - Q ) ) ^ 2 ) ) = ( ( ( ( abs ` ( Q - ( ( A + B ) / 2 ) ) ) ^ 2 ) + ( ( abs ` ( B - ( ( A + B ) / 2 ) ) ) ^ 2 ) ) - ( ( ( abs ` ( Q - ( ( A + B ) / 2 ) ) ) ^ 2 ) + ( ( abs ` ( P - ( ( A + B ) / 2 ) ) ) ^ 2 ) ) ) ) |
| 44 |
1 2 4 32 5
|
chordthmlem4 |
|- ( ph -> ( ( abs ` ( P - A ) ) x. ( abs ` ( P - B ) ) ) = ( ( ( abs ` ( B - ( ( A + B ) / 2 ) ) ) ^ 2 ) - ( ( abs ` ( P - ( ( A + B ) / 2 ) ) ) ^ 2 ) ) ) |
| 45 |
30 43 44
|
3eqtr4rd |
|- ( ph -> ( ( abs ` ( P - A ) ) x. ( abs ` ( P - B ) ) ) = ( ( ( abs ` ( B - Q ) ) ^ 2 ) - ( ( abs ` ( P - Q ) ) ^ 2 ) ) ) |