Metamath Proof Explorer


Theorem chordthm

Description: The intersecting chords theorem.

If points A, B, C, and D lie on a circle (with center Q, say), and the point P is on the interior of the segments AB and CD, then the two products of lengths PA x. PB and PC x. PD are equal.

The Euclidean plane is identified with the complex plane, and the fact that P is on AB and on CD is expressed by the hypothesis that the angles APB and CPD are equal to _pi .

The result is proven by using chordthmlem5 twice to show that PA x. PB and PC x. PD both equal BQ2 - PQ2. This is similar to the proof of the theorem given in Euclid's Elements, where it is Proposition III.35. This is Metamath 100 proof #55. (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses chordthm.angdef
|- F = ( x e. ( CC \ { 0 } ) , y e. ( CC \ { 0 } ) |-> ( Im ` ( log ` ( y / x ) ) ) )
chordthm.A
|- ( ph -> A e. CC )
chordthm.B
|- ( ph -> B e. CC )
chordthm.C
|- ( ph -> C e. CC )
chordthm.D
|- ( ph -> D e. CC )
chordthm.P
|- ( ph -> P e. CC )
chordthm.AneP
|- ( ph -> A =/= P )
chordthm.BneP
|- ( ph -> B =/= P )
chordthm.CneP
|- ( ph -> C =/= P )
chordthm.DneP
|- ( ph -> D =/= P )
chordthm.APB
|- ( ph -> ( ( A - P ) F ( B - P ) ) = _pi )
chordthm.CPD
|- ( ph -> ( ( C - P ) F ( D - P ) ) = _pi )
chordthm.Q
|- ( ph -> Q e. CC )
chordthm.ABcirc
|- ( ph -> ( abs ` ( A - Q ) ) = ( abs ` ( B - Q ) ) )
chordthm.ACcirc
|- ( ph -> ( abs ` ( A - Q ) ) = ( abs ` ( C - Q ) ) )
chordthm.ADcirc
|- ( ph -> ( abs ` ( A - Q ) ) = ( abs ` ( D - Q ) ) )
Assertion chordthm
|- ( ph -> ( ( abs ` ( P - A ) ) x. ( abs ` ( P - B ) ) ) = ( ( abs ` ( P - C ) ) x. ( abs ` ( P - D ) ) ) )

Proof

Step Hyp Ref Expression
1 chordthm.angdef
 |-  F = ( x e. ( CC \ { 0 } ) , y e. ( CC \ { 0 } ) |-> ( Im ` ( log ` ( y / x ) ) ) )
2 chordthm.A
 |-  ( ph -> A e. CC )
3 chordthm.B
 |-  ( ph -> B e. CC )
4 chordthm.C
 |-  ( ph -> C e. CC )
5 chordthm.D
 |-  ( ph -> D e. CC )
6 chordthm.P
 |-  ( ph -> P e. CC )
7 chordthm.AneP
 |-  ( ph -> A =/= P )
8 chordthm.BneP
 |-  ( ph -> B =/= P )
9 chordthm.CneP
 |-  ( ph -> C =/= P )
10 chordthm.DneP
 |-  ( ph -> D =/= P )
11 chordthm.APB
 |-  ( ph -> ( ( A - P ) F ( B - P ) ) = _pi )
12 chordthm.CPD
 |-  ( ph -> ( ( C - P ) F ( D - P ) ) = _pi )
13 chordthm.Q
 |-  ( ph -> Q e. CC )
14 chordthm.ABcirc
 |-  ( ph -> ( abs ` ( A - Q ) ) = ( abs ` ( B - Q ) ) )
15 chordthm.ACcirc
 |-  ( ph -> ( abs ` ( A - Q ) ) = ( abs ` ( C - Q ) ) )
16 chordthm.ADcirc
 |-  ( ph -> ( abs ` ( A - Q ) ) = ( abs ` ( D - Q ) ) )
17 10 necomd
 |-  ( ph -> P =/= D )
18 1 4 6 5 9 17 angpieqvd
 |-  ( ph -> ( ( ( C - P ) F ( D - P ) ) = _pi <-> E. v e. ( 0 (,) 1 ) P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) )
19 12 18 mpbid
 |-  ( ph -> E. v e. ( 0 (,) 1 ) P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) )
20 8 necomd
 |-  ( ph -> P =/= B )
21 1 2 6 3 7 20 angpieqvd
 |-  ( ph -> ( ( ( A - P ) F ( B - P ) ) = _pi <-> E. w e. ( 0 (,) 1 ) P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) )
22 11 21 mpbid
 |-  ( ph -> E. w e. ( 0 (,) 1 ) P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) )
23 22 adantr
 |-  ( ( ph /\ ( v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) ) -> E. w e. ( 0 (,) 1 ) P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) )
24 14 ad2antrr
 |-  ( ( ( ph /\ ( v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) ) /\ ( w e. ( 0 (,) 1 ) /\ P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) ) -> ( abs ` ( A - Q ) ) = ( abs ` ( B - Q ) ) )
25 16 ad2antrr
 |-  ( ( ( ph /\ ( v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) ) /\ ( w e. ( 0 (,) 1 ) /\ P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) ) -> ( abs ` ( A - Q ) ) = ( abs ` ( D - Q ) ) )
26 24 25 eqtr3d
 |-  ( ( ( ph /\ ( v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) ) /\ ( w e. ( 0 (,) 1 ) /\ P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) ) -> ( abs ` ( B - Q ) ) = ( abs ` ( D - Q ) ) )
27 26 oveq1d
 |-  ( ( ( ph /\ ( v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) ) /\ ( w e. ( 0 (,) 1 ) /\ P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) ) -> ( ( abs ` ( B - Q ) ) ^ 2 ) = ( ( abs ` ( D - Q ) ) ^ 2 ) )
28 27 oveq1d
 |-  ( ( ( ph /\ ( v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) ) /\ ( w e. ( 0 (,) 1 ) /\ P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) ) -> ( ( ( abs ` ( B - Q ) ) ^ 2 ) - ( ( abs ` ( P - Q ) ) ^ 2 ) ) = ( ( ( abs ` ( D - Q ) ) ^ 2 ) - ( ( abs ` ( P - Q ) ) ^ 2 ) ) )
29 2 ad2antrr
 |-  ( ( ( ph /\ ( v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) ) /\ ( w e. ( 0 (,) 1 ) /\ P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) ) -> A e. CC )
30 3 ad2antrr
 |-  ( ( ( ph /\ ( v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) ) /\ ( w e. ( 0 (,) 1 ) /\ P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) ) -> B e. CC )
31 13 ad2antrr
 |-  ( ( ( ph /\ ( v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) ) /\ ( w e. ( 0 (,) 1 ) /\ P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) ) -> Q e. CC )
32 ioossicc
 |-  ( 0 (,) 1 ) C_ ( 0 [,] 1 )
33 simprl
 |-  ( ( ( ph /\ ( v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) ) /\ ( w e. ( 0 (,) 1 ) /\ P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) ) -> w e. ( 0 (,) 1 ) )
34 32 33 sseldi
 |-  ( ( ( ph /\ ( v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) ) /\ ( w e. ( 0 (,) 1 ) /\ P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) ) -> w e. ( 0 [,] 1 ) )
35 simprr
 |-  ( ( ( ph /\ ( v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) ) /\ ( w e. ( 0 (,) 1 ) /\ P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) ) -> P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) )
36 29 30 31 34 35 24 chordthmlem5
 |-  ( ( ( ph /\ ( v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) ) /\ ( w e. ( 0 (,) 1 ) /\ P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) ) -> ( ( abs ` ( P - A ) ) x. ( abs ` ( P - B ) ) ) = ( ( ( abs ` ( B - Q ) ) ^ 2 ) - ( ( abs ` ( P - Q ) ) ^ 2 ) ) )
37 4 ad2antrr
 |-  ( ( ( ph /\ ( v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) ) /\ ( w e. ( 0 (,) 1 ) /\ P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) ) -> C e. CC )
38 5 ad2antrr
 |-  ( ( ( ph /\ ( v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) ) /\ ( w e. ( 0 (,) 1 ) /\ P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) ) -> D e. CC )
39 simplrl
 |-  ( ( ( ph /\ ( v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) ) /\ ( w e. ( 0 (,) 1 ) /\ P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) ) -> v e. ( 0 (,) 1 ) )
40 32 39 sseldi
 |-  ( ( ( ph /\ ( v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) ) /\ ( w e. ( 0 (,) 1 ) /\ P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) ) -> v e. ( 0 [,] 1 ) )
41 simplrr
 |-  ( ( ( ph /\ ( v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) ) /\ ( w e. ( 0 (,) 1 ) /\ P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) ) -> P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) )
42 15 ad2antrr
 |-  ( ( ( ph /\ ( v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) ) /\ ( w e. ( 0 (,) 1 ) /\ P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) ) -> ( abs ` ( A - Q ) ) = ( abs ` ( C - Q ) ) )
43 42 25 eqtr3d
 |-  ( ( ( ph /\ ( v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) ) /\ ( w e. ( 0 (,) 1 ) /\ P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) ) -> ( abs ` ( C - Q ) ) = ( abs ` ( D - Q ) ) )
44 37 38 31 40 41 43 chordthmlem5
 |-  ( ( ( ph /\ ( v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) ) /\ ( w e. ( 0 (,) 1 ) /\ P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) ) -> ( ( abs ` ( P - C ) ) x. ( abs ` ( P - D ) ) ) = ( ( ( abs ` ( D - Q ) ) ^ 2 ) - ( ( abs ` ( P - Q ) ) ^ 2 ) ) )
45 28 36 44 3eqtr4d
 |-  ( ( ( ph /\ ( v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) ) /\ ( w e. ( 0 (,) 1 ) /\ P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) ) -> ( ( abs ` ( P - A ) ) x. ( abs ` ( P - B ) ) ) = ( ( abs ` ( P - C ) ) x. ( abs ` ( P - D ) ) ) )
46 23 45 rexlimddv
 |-  ( ( ph /\ ( v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) ) -> ( ( abs ` ( P - A ) ) x. ( abs ` ( P - B ) ) ) = ( ( abs ` ( P - C ) ) x. ( abs ` ( P - D ) ) ) )
47 19 46 rexlimddv
 |-  ( ph -> ( ( abs ` ( P - A ) ) x. ( abs ` ( P - B ) ) ) = ( ( abs ` ( P - C ) ) x. ( abs ` ( P - D ) ) ) )