Description: The intersecting chords theorem.
If points A, B, C, and D lie on a circle (with center Q, say), and the point P is on the interior of the segments AB and CD, then the two products of lengths PA x. PB and PC x. PD are equal.
The Euclidean plane is identified with the complex plane, and the fact that P is on AB and on CD is expressed by the hypothesis that the angles APB and CPD are equal to _pi .
The result is proven by using chordthmlem5 twice to show that PA x. PB and PC x. PD both equal BQ2 - PQ2. This is similar to the proof of the theorem given in Euclid's Elements, where it is Proposition III.35. This is Metamath 100 proof #55. (Contributed by David Moews, 28-Feb-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | chordthm.angdef | |- F = ( x e. ( CC \ { 0 } ) , y e. ( CC \ { 0 } ) |-> ( Im ` ( log ` ( y / x ) ) ) ) |
|
| chordthm.A | |- ( ph -> A e. CC ) |
||
| chordthm.B | |- ( ph -> B e. CC ) |
||
| chordthm.C | |- ( ph -> C e. CC ) |
||
| chordthm.D | |- ( ph -> D e. CC ) |
||
| chordthm.P | |- ( ph -> P e. CC ) |
||
| chordthm.AneP | |- ( ph -> A =/= P ) |
||
| chordthm.BneP | |- ( ph -> B =/= P ) |
||
| chordthm.CneP | |- ( ph -> C =/= P ) |
||
| chordthm.DneP | |- ( ph -> D =/= P ) |
||
| chordthm.APB | |- ( ph -> ( ( A - P ) F ( B - P ) ) = _pi ) |
||
| chordthm.CPD | |- ( ph -> ( ( C - P ) F ( D - P ) ) = _pi ) |
||
| chordthm.Q | |- ( ph -> Q e. CC ) |
||
| chordthm.ABcirc | |- ( ph -> ( abs ` ( A - Q ) ) = ( abs ` ( B - Q ) ) ) |
||
| chordthm.ACcirc | |- ( ph -> ( abs ` ( A - Q ) ) = ( abs ` ( C - Q ) ) ) |
||
| chordthm.ADcirc | |- ( ph -> ( abs ` ( A - Q ) ) = ( abs ` ( D - Q ) ) ) |
||
| Assertion | chordthm | |- ( ph -> ( ( abs ` ( P - A ) ) x. ( abs ` ( P - B ) ) ) = ( ( abs ` ( P - C ) ) x. ( abs ` ( P - D ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chordthm.angdef | |- F = ( x e. ( CC \ { 0 } ) , y e. ( CC \ { 0 } ) |-> ( Im ` ( log ` ( y / x ) ) ) ) |
|
| 2 | chordthm.A | |- ( ph -> A e. CC ) |
|
| 3 | chordthm.B | |- ( ph -> B e. CC ) |
|
| 4 | chordthm.C | |- ( ph -> C e. CC ) |
|
| 5 | chordthm.D | |- ( ph -> D e. CC ) |
|
| 6 | chordthm.P | |- ( ph -> P e. CC ) |
|
| 7 | chordthm.AneP | |- ( ph -> A =/= P ) |
|
| 8 | chordthm.BneP | |- ( ph -> B =/= P ) |
|
| 9 | chordthm.CneP | |- ( ph -> C =/= P ) |
|
| 10 | chordthm.DneP | |- ( ph -> D =/= P ) |
|
| 11 | chordthm.APB | |- ( ph -> ( ( A - P ) F ( B - P ) ) = _pi ) |
|
| 12 | chordthm.CPD | |- ( ph -> ( ( C - P ) F ( D - P ) ) = _pi ) |
|
| 13 | chordthm.Q | |- ( ph -> Q e. CC ) |
|
| 14 | chordthm.ABcirc | |- ( ph -> ( abs ` ( A - Q ) ) = ( abs ` ( B - Q ) ) ) |
|
| 15 | chordthm.ACcirc | |- ( ph -> ( abs ` ( A - Q ) ) = ( abs ` ( C - Q ) ) ) |
|
| 16 | chordthm.ADcirc | |- ( ph -> ( abs ` ( A - Q ) ) = ( abs ` ( D - Q ) ) ) |
|
| 17 | 10 | necomd | |- ( ph -> P =/= D ) |
| 18 | 1 4 6 5 9 17 | angpieqvd | |- ( ph -> ( ( ( C - P ) F ( D - P ) ) = _pi <-> E. v e. ( 0 (,) 1 ) P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) ) |
| 19 | 12 18 | mpbid | |- ( ph -> E. v e. ( 0 (,) 1 ) P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) |
| 20 | 8 | necomd | |- ( ph -> P =/= B ) |
| 21 | 1 2 6 3 7 20 | angpieqvd | |- ( ph -> ( ( ( A - P ) F ( B - P ) ) = _pi <-> E. w e. ( 0 (,) 1 ) P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) ) |
| 22 | 11 21 | mpbid | |- ( ph -> E. w e. ( 0 (,) 1 ) P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) |
| 23 | 22 | adantr | |- ( ( ph /\ ( v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) ) -> E. w e. ( 0 (,) 1 ) P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) |
| 24 | 14 | ad2antrr | |- ( ( ( ph /\ ( v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) ) /\ ( w e. ( 0 (,) 1 ) /\ P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) ) -> ( abs ` ( A - Q ) ) = ( abs ` ( B - Q ) ) ) |
| 25 | 16 | ad2antrr | |- ( ( ( ph /\ ( v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) ) /\ ( w e. ( 0 (,) 1 ) /\ P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) ) -> ( abs ` ( A - Q ) ) = ( abs ` ( D - Q ) ) ) |
| 26 | 24 25 | eqtr3d | |- ( ( ( ph /\ ( v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) ) /\ ( w e. ( 0 (,) 1 ) /\ P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) ) -> ( abs ` ( B - Q ) ) = ( abs ` ( D - Q ) ) ) |
| 27 | 26 | oveq1d | |- ( ( ( ph /\ ( v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) ) /\ ( w e. ( 0 (,) 1 ) /\ P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) ) -> ( ( abs ` ( B - Q ) ) ^ 2 ) = ( ( abs ` ( D - Q ) ) ^ 2 ) ) |
| 28 | 27 | oveq1d | |- ( ( ( ph /\ ( v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) ) /\ ( w e. ( 0 (,) 1 ) /\ P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) ) -> ( ( ( abs ` ( B - Q ) ) ^ 2 ) - ( ( abs ` ( P - Q ) ) ^ 2 ) ) = ( ( ( abs ` ( D - Q ) ) ^ 2 ) - ( ( abs ` ( P - Q ) ) ^ 2 ) ) ) |
| 29 | 2 | ad2antrr | |- ( ( ( ph /\ ( v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) ) /\ ( w e. ( 0 (,) 1 ) /\ P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) ) -> A e. CC ) |
| 30 | 3 | ad2antrr | |- ( ( ( ph /\ ( v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) ) /\ ( w e. ( 0 (,) 1 ) /\ P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) ) -> B e. CC ) |
| 31 | 13 | ad2antrr | |- ( ( ( ph /\ ( v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) ) /\ ( w e. ( 0 (,) 1 ) /\ P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) ) -> Q e. CC ) |
| 32 | ioossicc | |- ( 0 (,) 1 ) C_ ( 0 [,] 1 ) |
|
| 33 | simprl | |- ( ( ( ph /\ ( v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) ) /\ ( w e. ( 0 (,) 1 ) /\ P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) ) -> w e. ( 0 (,) 1 ) ) |
|
| 34 | 32 33 | sselid | |- ( ( ( ph /\ ( v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) ) /\ ( w e. ( 0 (,) 1 ) /\ P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) ) -> w e. ( 0 [,] 1 ) ) |
| 35 | simprr | |- ( ( ( ph /\ ( v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) ) /\ ( w e. ( 0 (,) 1 ) /\ P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) ) -> P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) |
|
| 36 | 29 30 31 34 35 24 | chordthmlem5 | |- ( ( ( ph /\ ( v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) ) /\ ( w e. ( 0 (,) 1 ) /\ P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) ) -> ( ( abs ` ( P - A ) ) x. ( abs ` ( P - B ) ) ) = ( ( ( abs ` ( B - Q ) ) ^ 2 ) - ( ( abs ` ( P - Q ) ) ^ 2 ) ) ) |
| 37 | 4 | ad2antrr | |- ( ( ( ph /\ ( v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) ) /\ ( w e. ( 0 (,) 1 ) /\ P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) ) -> C e. CC ) |
| 38 | 5 | ad2antrr | |- ( ( ( ph /\ ( v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) ) /\ ( w e. ( 0 (,) 1 ) /\ P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) ) -> D e. CC ) |
| 39 | simplrl | |- ( ( ( ph /\ ( v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) ) /\ ( w e. ( 0 (,) 1 ) /\ P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) ) -> v e. ( 0 (,) 1 ) ) |
|
| 40 | 32 39 | sselid | |- ( ( ( ph /\ ( v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) ) /\ ( w e. ( 0 (,) 1 ) /\ P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) ) -> v e. ( 0 [,] 1 ) ) |
| 41 | simplrr | |- ( ( ( ph /\ ( v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) ) /\ ( w e. ( 0 (,) 1 ) /\ P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) ) -> P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) |
|
| 42 | 15 | ad2antrr | |- ( ( ( ph /\ ( v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) ) /\ ( w e. ( 0 (,) 1 ) /\ P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) ) -> ( abs ` ( A - Q ) ) = ( abs ` ( C - Q ) ) ) |
| 43 | 42 25 | eqtr3d | |- ( ( ( ph /\ ( v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) ) /\ ( w e. ( 0 (,) 1 ) /\ P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) ) -> ( abs ` ( C - Q ) ) = ( abs ` ( D - Q ) ) ) |
| 44 | 37 38 31 40 41 43 | chordthmlem5 | |- ( ( ( ph /\ ( v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) ) /\ ( w e. ( 0 (,) 1 ) /\ P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) ) -> ( ( abs ` ( P - C ) ) x. ( abs ` ( P - D ) ) ) = ( ( ( abs ` ( D - Q ) ) ^ 2 ) - ( ( abs ` ( P - Q ) ) ^ 2 ) ) ) |
| 45 | 28 36 44 | 3eqtr4d | |- ( ( ( ph /\ ( v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) ) /\ ( w e. ( 0 (,) 1 ) /\ P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) ) -> ( ( abs ` ( P - A ) ) x. ( abs ` ( P - B ) ) ) = ( ( abs ` ( P - C ) ) x. ( abs ` ( P - D ) ) ) ) |
| 46 | 23 45 | rexlimddv | |- ( ( ph /\ ( v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) ) -> ( ( abs ` ( P - A ) ) x. ( abs ` ( P - B ) ) ) = ( ( abs ` ( P - C ) ) x. ( abs ` ( P - D ) ) ) ) |
| 47 | 19 46 | rexlimddv | |- ( ph -> ( ( abs ` ( P - A ) ) x. ( abs ` ( P - B ) ) ) = ( ( abs ` ( P - C ) ) x. ( abs ` ( P - D ) ) ) ) |