| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chordthmALT.angdef |
|- F = ( x e. ( CC \ { 0 } ) , y e. ( CC \ { 0 } ) |-> ( Im ` ( log ` ( y / x ) ) ) ) |
| 2 |
|
chordthmALT.A |
|- ( ph -> A e. CC ) |
| 3 |
|
chordthmALT.B |
|- ( ph -> B e. CC ) |
| 4 |
|
chordthmALT.C |
|- ( ph -> C e. CC ) |
| 5 |
|
chordthmALT.D |
|- ( ph -> D e. CC ) |
| 6 |
|
chordthmALT.P |
|- ( ph -> P e. CC ) |
| 7 |
|
chordthmALT.AneP |
|- ( ph -> A =/= P ) |
| 8 |
|
chordthmALT.BneP |
|- ( ph -> B =/= P ) |
| 9 |
|
chordthmALT.CneP |
|- ( ph -> C =/= P ) |
| 10 |
|
chordthmALT.DneP |
|- ( ph -> D =/= P ) |
| 11 |
|
chordthmALT.APB |
|- ( ph -> ( ( A - P ) F ( B - P ) ) = _pi ) |
| 12 |
|
chordthmALT.CPD |
|- ( ph -> ( ( C - P ) F ( D - P ) ) = _pi ) |
| 13 |
|
chordthmALT.Q |
|- ( ph -> Q e. CC ) |
| 14 |
|
chordthmALT.ABcirc |
|- ( ph -> ( abs ` ( A - Q ) ) = ( abs ` ( B - Q ) ) ) |
| 15 |
|
chordthmALT.ACcirc |
|- ( ph -> ( abs ` ( A - Q ) ) = ( abs ` ( C - Q ) ) ) |
| 16 |
|
chordthmALT.ADcirc |
|- ( ph -> ( abs ` ( A - Q ) ) = ( abs ` ( D - Q ) ) ) |
| 17 |
10
|
necomd |
|- ( ph -> P =/= D ) |
| 18 |
1 4 6 5 9 17
|
angpieqvd |
|- ( ph -> ( ( ( C - P ) F ( D - P ) ) = _pi <-> E. v e. ( 0 (,) 1 ) P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) ) |
| 19 |
12 18
|
mpbid |
|- ( ph -> E. v e. ( 0 (,) 1 ) P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) |
| 20 |
|
df-rex |
|- ( E. v e. ( 0 (,) 1 ) P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) <-> E. v ( v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) ) |
| 21 |
20
|
biimpi |
|- ( E. v e. ( 0 (,) 1 ) P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) -> E. v ( v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) ) |
| 22 |
19 21
|
syl |
|- ( ph -> E. v ( v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) ) |
| 23 |
8
|
necomd |
|- ( ph -> P =/= B ) |
| 24 |
1 2 6 3 7 23
|
angpieqvd |
|- ( ph -> ( ( ( A - P ) F ( B - P ) ) = _pi <-> E. w e. ( 0 (,) 1 ) P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) ) |
| 25 |
11 24
|
mpbid |
|- ( ph -> E. w e. ( 0 (,) 1 ) P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) |
| 26 |
|
df-rex |
|- ( E. w e. ( 0 (,) 1 ) P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) <-> E. w ( w e. ( 0 (,) 1 ) /\ P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) ) |
| 27 |
26
|
biimpi |
|- ( E. w e. ( 0 (,) 1 ) P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) -> E. w ( w e. ( 0 (,) 1 ) /\ P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) ) |
| 28 |
25 27
|
syl |
|- ( ph -> E. w ( w e. ( 0 (,) 1 ) /\ P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) ) |
| 29 |
28
|
adantr |
|- ( ( ph /\ ( v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) ) -> E. w ( w e. ( 0 (,) 1 ) /\ P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) ) |
| 30 |
14 16
|
eqtr3d |
|- ( ph -> ( abs ` ( B - Q ) ) = ( abs ` ( D - Q ) ) ) |
| 31 |
30
|
oveq1d |
|- ( ph -> ( ( abs ` ( B - Q ) ) ^ 2 ) = ( ( abs ` ( D - Q ) ) ^ 2 ) ) |
| 32 |
31
|
oveq1d |
|- ( ph -> ( ( ( abs ` ( B - Q ) ) ^ 2 ) - ( ( abs ` ( P - Q ) ) ^ 2 ) ) = ( ( ( abs ` ( D - Q ) ) ^ 2 ) - ( ( abs ` ( P - Q ) ) ^ 2 ) ) ) |
| 33 |
32
|
3ad2ant1 |
|- ( ( ph /\ ( v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) /\ ( w e. ( 0 (,) 1 ) /\ P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) ) -> ( ( ( abs ` ( B - Q ) ) ^ 2 ) - ( ( abs ` ( P - Q ) ) ^ 2 ) ) = ( ( ( abs ` ( D - Q ) ) ^ 2 ) - ( ( abs ` ( P - Q ) ) ^ 2 ) ) ) |
| 34 |
2
|
3ad2ant1 |
|- ( ( ph /\ w e. ( 0 (,) 1 ) /\ P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) -> A e. CC ) |
| 35 |
3
|
3ad2ant1 |
|- ( ( ph /\ w e. ( 0 (,) 1 ) /\ P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) -> B e. CC ) |
| 36 |
13
|
3ad2ant1 |
|- ( ( ph /\ w e. ( 0 (,) 1 ) /\ P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) -> Q e. CC ) |
| 37 |
|
ioossicc |
|- ( 0 (,) 1 ) C_ ( 0 [,] 1 ) |
| 38 |
|
id |
|- ( w e. ( 0 (,) 1 ) -> w e. ( 0 (,) 1 ) ) |
| 39 |
37 38
|
sselid |
|- ( w e. ( 0 (,) 1 ) -> w e. ( 0 [,] 1 ) ) |
| 40 |
39
|
3ad2ant2 |
|- ( ( ph /\ w e. ( 0 (,) 1 ) /\ P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) -> w e. ( 0 [,] 1 ) ) |
| 41 |
|
id |
|- ( P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) -> P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) |
| 42 |
41
|
3ad2ant3 |
|- ( ( ph /\ w e. ( 0 (,) 1 ) /\ P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) -> P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) |
| 43 |
14
|
3ad2ant1 |
|- ( ( ph /\ w e. ( 0 (,) 1 ) /\ P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) -> ( abs ` ( A - Q ) ) = ( abs ` ( B - Q ) ) ) |
| 44 |
34 35 36 40 42 43
|
chordthmlem5 |
|- ( ( ph /\ w e. ( 0 (,) 1 ) /\ P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) -> ( ( abs ` ( P - A ) ) x. ( abs ` ( P - B ) ) ) = ( ( ( abs ` ( B - Q ) ) ^ 2 ) - ( ( abs ` ( P - Q ) ) ^ 2 ) ) ) |
| 45 |
44
|
3expb |
|- ( ( ph /\ ( w e. ( 0 (,) 1 ) /\ P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) ) -> ( ( abs ` ( P - A ) ) x. ( abs ` ( P - B ) ) ) = ( ( ( abs ` ( B - Q ) ) ^ 2 ) - ( ( abs ` ( P - Q ) ) ^ 2 ) ) ) |
| 46 |
45
|
3adant2 |
|- ( ( ph /\ ( v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) /\ ( w e. ( 0 (,) 1 ) /\ P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) ) -> ( ( abs ` ( P - A ) ) x. ( abs ` ( P - B ) ) ) = ( ( ( abs ` ( B - Q ) ) ^ 2 ) - ( ( abs ` ( P - Q ) ) ^ 2 ) ) ) |
| 47 |
4
|
3ad2ant1 |
|- ( ( ph /\ v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) -> C e. CC ) |
| 48 |
5
|
3ad2ant1 |
|- ( ( ph /\ v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) -> D e. CC ) |
| 49 |
13
|
3ad2ant1 |
|- ( ( ph /\ v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) -> Q e. CC ) |
| 50 |
|
id |
|- ( v e. ( 0 (,) 1 ) -> v e. ( 0 (,) 1 ) ) |
| 51 |
37 50
|
sselid |
|- ( v e. ( 0 (,) 1 ) -> v e. ( 0 [,] 1 ) ) |
| 52 |
51
|
3ad2ant2 |
|- ( ( ph /\ v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) -> v e. ( 0 [,] 1 ) ) |
| 53 |
|
id |
|- ( P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) -> P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) |
| 54 |
53
|
3ad2ant3 |
|- ( ( ph /\ v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) -> P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) |
| 55 |
15 16
|
eqtr3d |
|- ( ph -> ( abs ` ( C - Q ) ) = ( abs ` ( D - Q ) ) ) |
| 56 |
55
|
3ad2ant1 |
|- ( ( ph /\ v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) -> ( abs ` ( C - Q ) ) = ( abs ` ( D - Q ) ) ) |
| 57 |
47 48 49 52 54 56
|
chordthmlem5 |
|- ( ( ph /\ v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) -> ( ( abs ` ( P - C ) ) x. ( abs ` ( P - D ) ) ) = ( ( ( abs ` ( D - Q ) ) ^ 2 ) - ( ( abs ` ( P - Q ) ) ^ 2 ) ) ) |
| 58 |
57
|
3expb |
|- ( ( ph /\ ( v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) ) -> ( ( abs ` ( P - C ) ) x. ( abs ` ( P - D ) ) ) = ( ( ( abs ` ( D - Q ) ) ^ 2 ) - ( ( abs ` ( P - Q ) ) ^ 2 ) ) ) |
| 59 |
58
|
3adant3 |
|- ( ( ph /\ ( v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) /\ ( w e. ( 0 (,) 1 ) /\ P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) ) -> ( ( abs ` ( P - C ) ) x. ( abs ` ( P - D ) ) ) = ( ( ( abs ` ( D - Q ) ) ^ 2 ) - ( ( abs ` ( P - Q ) ) ^ 2 ) ) ) |
| 60 |
33 46 59
|
3eqtr4d |
|- ( ( ph /\ ( v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) /\ ( w e. ( 0 (,) 1 ) /\ P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) ) -> ( ( abs ` ( P - A ) ) x. ( abs ` ( P - B ) ) ) = ( ( abs ` ( P - C ) ) x. ( abs ` ( P - D ) ) ) ) |
| 61 |
60
|
3expia |
|- ( ( ph /\ ( v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) ) -> ( ( w e. ( 0 (,) 1 ) /\ P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) -> ( ( abs ` ( P - A ) ) x. ( abs ` ( P - B ) ) ) = ( ( abs ` ( P - C ) ) x. ( abs ` ( P - D ) ) ) ) ) |
| 62 |
61
|
exlimdv |
|- ( ( ph /\ ( v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) ) -> ( E. w ( w e. ( 0 (,) 1 ) /\ P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) -> ( ( abs ` ( P - A ) ) x. ( abs ` ( P - B ) ) ) = ( ( abs ` ( P - C ) ) x. ( abs ` ( P - D ) ) ) ) ) |
| 63 |
29 62
|
mpd |
|- ( ( ph /\ ( v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) ) -> ( ( abs ` ( P - A ) ) x. ( abs ` ( P - B ) ) ) = ( ( abs ` ( P - C ) ) x. ( abs ` ( P - D ) ) ) ) |
| 64 |
63
|
ex |
|- ( ph -> ( ( v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) -> ( ( abs ` ( P - A ) ) x. ( abs ` ( P - B ) ) ) = ( ( abs ` ( P - C ) ) x. ( abs ` ( P - D ) ) ) ) ) |
| 65 |
64
|
exlimdv |
|- ( ph -> ( E. v ( v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) -> ( ( abs ` ( P - A ) ) x. ( abs ` ( P - B ) ) ) = ( ( abs ` ( P - C ) ) x. ( abs ` ( P - D ) ) ) ) ) |
| 66 |
22 65
|
mpd |
|- ( ph -> ( ( abs ` ( P - A ) ) x. ( abs ` ( P - B ) ) ) = ( ( abs ` ( P - C ) ) x. ( abs ` ( P - D ) ) ) ) |