Step |
Hyp |
Ref |
Expression |
1 |
|
chordthmALT.angdef |
|- F = ( x e. ( CC \ { 0 } ) , y e. ( CC \ { 0 } ) |-> ( Im ` ( log ` ( y / x ) ) ) ) |
2 |
|
chordthmALT.A |
|- ( ph -> A e. CC ) |
3 |
|
chordthmALT.B |
|- ( ph -> B e. CC ) |
4 |
|
chordthmALT.C |
|- ( ph -> C e. CC ) |
5 |
|
chordthmALT.D |
|- ( ph -> D e. CC ) |
6 |
|
chordthmALT.P |
|- ( ph -> P e. CC ) |
7 |
|
chordthmALT.AneP |
|- ( ph -> A =/= P ) |
8 |
|
chordthmALT.BneP |
|- ( ph -> B =/= P ) |
9 |
|
chordthmALT.CneP |
|- ( ph -> C =/= P ) |
10 |
|
chordthmALT.DneP |
|- ( ph -> D =/= P ) |
11 |
|
chordthmALT.APB |
|- ( ph -> ( ( A - P ) F ( B - P ) ) = _pi ) |
12 |
|
chordthmALT.CPD |
|- ( ph -> ( ( C - P ) F ( D - P ) ) = _pi ) |
13 |
|
chordthmALT.Q |
|- ( ph -> Q e. CC ) |
14 |
|
chordthmALT.ABcirc |
|- ( ph -> ( abs ` ( A - Q ) ) = ( abs ` ( B - Q ) ) ) |
15 |
|
chordthmALT.ACcirc |
|- ( ph -> ( abs ` ( A - Q ) ) = ( abs ` ( C - Q ) ) ) |
16 |
|
chordthmALT.ADcirc |
|- ( ph -> ( abs ` ( A - Q ) ) = ( abs ` ( D - Q ) ) ) |
17 |
10
|
necomd |
|- ( ph -> P =/= D ) |
18 |
1 4 6 5 9 17
|
angpieqvd |
|- ( ph -> ( ( ( C - P ) F ( D - P ) ) = _pi <-> E. v e. ( 0 (,) 1 ) P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) ) |
19 |
12 18
|
mpbid |
|- ( ph -> E. v e. ( 0 (,) 1 ) P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) |
20 |
|
df-rex |
|- ( E. v e. ( 0 (,) 1 ) P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) <-> E. v ( v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) ) |
21 |
20
|
biimpi |
|- ( E. v e. ( 0 (,) 1 ) P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) -> E. v ( v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) ) |
22 |
19 21
|
syl |
|- ( ph -> E. v ( v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) ) |
23 |
8
|
necomd |
|- ( ph -> P =/= B ) |
24 |
1 2 6 3 7 23
|
angpieqvd |
|- ( ph -> ( ( ( A - P ) F ( B - P ) ) = _pi <-> E. w e. ( 0 (,) 1 ) P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) ) |
25 |
11 24
|
mpbid |
|- ( ph -> E. w e. ( 0 (,) 1 ) P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) |
26 |
|
df-rex |
|- ( E. w e. ( 0 (,) 1 ) P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) <-> E. w ( w e. ( 0 (,) 1 ) /\ P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) ) |
27 |
26
|
biimpi |
|- ( E. w e. ( 0 (,) 1 ) P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) -> E. w ( w e. ( 0 (,) 1 ) /\ P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) ) |
28 |
25 27
|
syl |
|- ( ph -> E. w ( w e. ( 0 (,) 1 ) /\ P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) ) |
29 |
28
|
adantr |
|- ( ( ph /\ ( v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) ) -> E. w ( w e. ( 0 (,) 1 ) /\ P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) ) |
30 |
14 16
|
eqtr3d |
|- ( ph -> ( abs ` ( B - Q ) ) = ( abs ` ( D - Q ) ) ) |
31 |
30
|
oveq1d |
|- ( ph -> ( ( abs ` ( B - Q ) ) ^ 2 ) = ( ( abs ` ( D - Q ) ) ^ 2 ) ) |
32 |
31
|
oveq1d |
|- ( ph -> ( ( ( abs ` ( B - Q ) ) ^ 2 ) - ( ( abs ` ( P - Q ) ) ^ 2 ) ) = ( ( ( abs ` ( D - Q ) ) ^ 2 ) - ( ( abs ` ( P - Q ) ) ^ 2 ) ) ) |
33 |
32
|
3ad2ant1 |
|- ( ( ph /\ ( v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) /\ ( w e. ( 0 (,) 1 ) /\ P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) ) -> ( ( ( abs ` ( B - Q ) ) ^ 2 ) - ( ( abs ` ( P - Q ) ) ^ 2 ) ) = ( ( ( abs ` ( D - Q ) ) ^ 2 ) - ( ( abs ` ( P - Q ) ) ^ 2 ) ) ) |
34 |
2
|
3ad2ant1 |
|- ( ( ph /\ w e. ( 0 (,) 1 ) /\ P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) -> A e. CC ) |
35 |
3
|
3ad2ant1 |
|- ( ( ph /\ w e. ( 0 (,) 1 ) /\ P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) -> B e. CC ) |
36 |
13
|
3ad2ant1 |
|- ( ( ph /\ w e. ( 0 (,) 1 ) /\ P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) -> Q e. CC ) |
37 |
|
ioossicc |
|- ( 0 (,) 1 ) C_ ( 0 [,] 1 ) |
38 |
|
id |
|- ( w e. ( 0 (,) 1 ) -> w e. ( 0 (,) 1 ) ) |
39 |
37 38
|
sselid |
|- ( w e. ( 0 (,) 1 ) -> w e. ( 0 [,] 1 ) ) |
40 |
39
|
3ad2ant2 |
|- ( ( ph /\ w e. ( 0 (,) 1 ) /\ P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) -> w e. ( 0 [,] 1 ) ) |
41 |
|
id |
|- ( P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) -> P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) |
42 |
41
|
3ad2ant3 |
|- ( ( ph /\ w e. ( 0 (,) 1 ) /\ P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) -> P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) |
43 |
14
|
3ad2ant1 |
|- ( ( ph /\ w e. ( 0 (,) 1 ) /\ P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) -> ( abs ` ( A - Q ) ) = ( abs ` ( B - Q ) ) ) |
44 |
34 35 36 40 42 43
|
chordthmlem5 |
|- ( ( ph /\ w e. ( 0 (,) 1 ) /\ P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) -> ( ( abs ` ( P - A ) ) x. ( abs ` ( P - B ) ) ) = ( ( ( abs ` ( B - Q ) ) ^ 2 ) - ( ( abs ` ( P - Q ) ) ^ 2 ) ) ) |
45 |
44
|
3expb |
|- ( ( ph /\ ( w e. ( 0 (,) 1 ) /\ P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) ) -> ( ( abs ` ( P - A ) ) x. ( abs ` ( P - B ) ) ) = ( ( ( abs ` ( B - Q ) ) ^ 2 ) - ( ( abs ` ( P - Q ) ) ^ 2 ) ) ) |
46 |
45
|
3adant2 |
|- ( ( ph /\ ( v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) /\ ( w e. ( 0 (,) 1 ) /\ P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) ) -> ( ( abs ` ( P - A ) ) x. ( abs ` ( P - B ) ) ) = ( ( ( abs ` ( B - Q ) ) ^ 2 ) - ( ( abs ` ( P - Q ) ) ^ 2 ) ) ) |
47 |
4
|
3ad2ant1 |
|- ( ( ph /\ v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) -> C e. CC ) |
48 |
5
|
3ad2ant1 |
|- ( ( ph /\ v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) -> D e. CC ) |
49 |
13
|
3ad2ant1 |
|- ( ( ph /\ v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) -> Q e. CC ) |
50 |
|
id |
|- ( v e. ( 0 (,) 1 ) -> v e. ( 0 (,) 1 ) ) |
51 |
37 50
|
sselid |
|- ( v e. ( 0 (,) 1 ) -> v e. ( 0 [,] 1 ) ) |
52 |
51
|
3ad2ant2 |
|- ( ( ph /\ v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) -> v e. ( 0 [,] 1 ) ) |
53 |
|
id |
|- ( P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) -> P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) |
54 |
53
|
3ad2ant3 |
|- ( ( ph /\ v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) -> P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) |
55 |
15 16
|
eqtr3d |
|- ( ph -> ( abs ` ( C - Q ) ) = ( abs ` ( D - Q ) ) ) |
56 |
55
|
3ad2ant1 |
|- ( ( ph /\ v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) -> ( abs ` ( C - Q ) ) = ( abs ` ( D - Q ) ) ) |
57 |
47 48 49 52 54 56
|
chordthmlem5 |
|- ( ( ph /\ v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) -> ( ( abs ` ( P - C ) ) x. ( abs ` ( P - D ) ) ) = ( ( ( abs ` ( D - Q ) ) ^ 2 ) - ( ( abs ` ( P - Q ) ) ^ 2 ) ) ) |
58 |
57
|
3expb |
|- ( ( ph /\ ( v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) ) -> ( ( abs ` ( P - C ) ) x. ( abs ` ( P - D ) ) ) = ( ( ( abs ` ( D - Q ) ) ^ 2 ) - ( ( abs ` ( P - Q ) ) ^ 2 ) ) ) |
59 |
58
|
3adant3 |
|- ( ( ph /\ ( v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) /\ ( w e. ( 0 (,) 1 ) /\ P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) ) -> ( ( abs ` ( P - C ) ) x. ( abs ` ( P - D ) ) ) = ( ( ( abs ` ( D - Q ) ) ^ 2 ) - ( ( abs ` ( P - Q ) ) ^ 2 ) ) ) |
60 |
33 46 59
|
3eqtr4d |
|- ( ( ph /\ ( v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) /\ ( w e. ( 0 (,) 1 ) /\ P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) ) -> ( ( abs ` ( P - A ) ) x. ( abs ` ( P - B ) ) ) = ( ( abs ` ( P - C ) ) x. ( abs ` ( P - D ) ) ) ) |
61 |
60
|
3expia |
|- ( ( ph /\ ( v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) ) -> ( ( w e. ( 0 (,) 1 ) /\ P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) -> ( ( abs ` ( P - A ) ) x. ( abs ` ( P - B ) ) ) = ( ( abs ` ( P - C ) ) x. ( abs ` ( P - D ) ) ) ) ) |
62 |
61
|
exlimdv |
|- ( ( ph /\ ( v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) ) -> ( E. w ( w e. ( 0 (,) 1 ) /\ P = ( ( w x. A ) + ( ( 1 - w ) x. B ) ) ) -> ( ( abs ` ( P - A ) ) x. ( abs ` ( P - B ) ) ) = ( ( abs ` ( P - C ) ) x. ( abs ` ( P - D ) ) ) ) ) |
63 |
29 62
|
mpd |
|- ( ( ph /\ ( v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) ) -> ( ( abs ` ( P - A ) ) x. ( abs ` ( P - B ) ) ) = ( ( abs ` ( P - C ) ) x. ( abs ` ( P - D ) ) ) ) |
64 |
63
|
ex |
|- ( ph -> ( ( v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) -> ( ( abs ` ( P - A ) ) x. ( abs ` ( P - B ) ) ) = ( ( abs ` ( P - C ) ) x. ( abs ` ( P - D ) ) ) ) ) |
65 |
64
|
exlimdv |
|- ( ph -> ( E. v ( v e. ( 0 (,) 1 ) /\ P = ( ( v x. C ) + ( ( 1 - v ) x. D ) ) ) -> ( ( abs ` ( P - A ) ) x. ( abs ` ( P - B ) ) ) = ( ( abs ` ( P - C ) ) x. ( abs ` ( P - D ) ) ) ) ) |
66 |
22 65
|
mpd |
|- ( ph -> ( ( abs ` ( P - A ) ) x. ( abs ` ( P - B ) ) ) = ( ( abs ` ( P - C ) ) x. ( abs ` ( P - D ) ) ) ) |