Metamath Proof Explorer


Theorem isosctrlem1ALT

Description: Lemma for isosctr . This proof was automatically derived by completeusersproof from its Virtual Deduction proof counterpart https://us.metamath.org/other/completeusersproof/isosctrlem1altvd.html . As it is verified by the Metamath program, isosctrlem1ALT verifies https://us.metamath.org/other/completeusersproof/isosctrlem1altvd.html . (Contributed by Alan Sare, 22-Apr-2018) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion isosctrlem1ALT
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( Im ` ( log ` ( 1 - A ) ) ) =/= _pi )

Proof

Step Hyp Ref Expression
1 ax-1cn
 |-  1 e. CC
2 1 a1i
 |-  ( A e. CC -> 1 e. CC )
3 id
 |-  ( A e. CC -> A e. CC )
4 2 3 subcld
 |-  ( A e. CC -> ( 1 - A ) e. CC )
5 4 adantr
 |-  ( ( A e. CC /\ -. 1 = A ) -> ( 1 - A ) e. CC )
6 subeq0
 |-  ( ( 1 e. CC /\ A e. CC ) -> ( ( 1 - A ) = 0 <-> 1 = A ) )
7 6 biimpd
 |-  ( ( 1 e. CC /\ A e. CC ) -> ( ( 1 - A ) = 0 -> 1 = A ) )
8 7 idiALT
 |-  ( ( 1 e. CC /\ A e. CC ) -> ( ( 1 - A ) = 0 -> 1 = A ) )
9 1 3 8 sylancr
 |-  ( A e. CC -> ( ( 1 - A ) = 0 -> 1 = A ) )
10 9 con3d
 |-  ( A e. CC -> ( -. 1 = A -> -. ( 1 - A ) = 0 ) )
11 df-ne
 |-  ( ( 1 - A ) =/= 0 <-> -. ( 1 - A ) = 0 )
12 11 biimpri
 |-  ( -. ( 1 - A ) = 0 -> ( 1 - A ) =/= 0 )
13 10 12 syl6
 |-  ( A e. CC -> ( -. 1 = A -> ( 1 - A ) =/= 0 ) )
14 13 imp
 |-  ( ( A e. CC /\ -. 1 = A ) -> ( 1 - A ) =/= 0 )
15 5 14 logcld
 |-  ( ( A e. CC /\ -. 1 = A ) -> ( log ` ( 1 - A ) ) e. CC )
16 15 imcld
 |-  ( ( A e. CC /\ -. 1 = A ) -> ( Im ` ( log ` ( 1 - A ) ) ) e. RR )
17 16 3adant2
 |-  ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( Im ` ( log ` ( 1 - A ) ) ) e. RR )
18 pire
 |-  _pi e. RR
19 2re
 |-  2 e. RR
20 2ne0
 |-  2 =/= 0
21 18 19 20 redivcli
 |-  ( _pi / 2 ) e. RR
22 21 a1i
 |-  ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( _pi / 2 ) e. RR )
23 18 a1i
 |-  ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> _pi e. RR )
24 neghalfpirx
 |-  -u ( _pi / 2 ) e. RR*
25 21 rexri
 |-  ( _pi / 2 ) e. RR*
26 3 recld
 |-  ( A e. CC -> ( Re ` A ) e. RR )
27 26 recnd
 |-  ( A e. CC -> ( Re ` A ) e. CC )
28 27 subidd
 |-  ( A e. CC -> ( ( Re ` A ) - ( Re ` A ) ) = 0 )
29 28 adantr
 |-  ( ( A e. CC /\ ( abs ` A ) = 1 ) -> ( ( Re ` A ) - ( Re ` A ) ) = 0 )
30 1re
 |-  1 e. RR
31 30 a1i
 |-  ( 1 e. CC -> 1 e. RR )
32 1 31 ax-mp
 |-  1 e. RR
33 3 releabsd
 |-  ( A e. CC -> ( Re ` A ) <_ ( abs ` A ) )
34 33 adantr
 |-  ( ( A e. CC /\ ( abs ` A ) = 1 ) -> ( Re ` A ) <_ ( abs ` A ) )
35 id
 |-  ( ( abs ` A ) = 1 -> ( abs ` A ) = 1 )
36 35 adantl
 |-  ( ( A e. CC /\ ( abs ` A ) = 1 ) -> ( abs ` A ) = 1 )
37 34 36 breqtrd
 |-  ( ( A e. CC /\ ( abs ` A ) = 1 ) -> ( Re ` A ) <_ 1 )
38 lesub1
 |-  ( ( ( Re ` A ) e. RR /\ 1 e. RR /\ ( Re ` A ) e. RR ) -> ( ( Re ` A ) <_ 1 <-> ( ( Re ` A ) - ( Re ` A ) ) <_ ( 1 - ( Re ` A ) ) ) )
39 38 3impcombi
 |-  ( ( 1 e. RR /\ ( Re ` A ) e. RR /\ ( Re ` A ) <_ 1 ) -> ( ( Re ` A ) - ( Re ` A ) ) <_ ( 1 - ( Re ` A ) ) )
40 39 idiALT
 |-  ( ( 1 e. RR /\ ( Re ` A ) e. RR /\ ( Re ` A ) <_ 1 ) -> ( ( Re ` A ) - ( Re ` A ) ) <_ ( 1 - ( Re ` A ) ) )
41 32 26 37 40 mp3an2ani
 |-  ( ( A e. CC /\ ( abs ` A ) = 1 ) -> ( ( Re ` A ) - ( Re ` A ) ) <_ ( 1 - ( Re ` A ) ) )
42 29 41 eqbrtrrd
 |-  ( ( A e. CC /\ ( abs ` A ) = 1 ) -> 0 <_ ( 1 - ( Re ` A ) ) )
43 32 a1i
 |-  ( T. -> 1 e. RR )
44 43 rered
 |-  ( T. -> ( Re ` 1 ) = 1 )
45 44 mptru
 |-  ( Re ` 1 ) = 1
46 oveq1
 |-  ( ( Re ` 1 ) = 1 -> ( ( Re ` 1 ) - ( Re ` A ) ) = ( 1 - ( Re ` A ) ) )
47 46 eqcomd
 |-  ( ( Re ` 1 ) = 1 -> ( 1 - ( Re ` A ) ) = ( ( Re ` 1 ) - ( Re ` A ) ) )
48 45 47 ax-mp
 |-  ( 1 - ( Re ` A ) ) = ( ( Re ` 1 ) - ( Re ` A ) )
49 resub
 |-  ( ( 1 e. CC /\ A e. CC ) -> ( Re ` ( 1 - A ) ) = ( ( Re ` 1 ) - ( Re ` A ) ) )
50 49 eqcomd
 |-  ( ( 1 e. CC /\ A e. CC ) -> ( ( Re ` 1 ) - ( Re ` A ) ) = ( Re ` ( 1 - A ) ) )
51 50 idiALT
 |-  ( ( 1 e. CC /\ A e. CC ) -> ( ( Re ` 1 ) - ( Re ` A ) ) = ( Re ` ( 1 - A ) ) )
52 1 3 51 sylancr
 |-  ( A e. CC -> ( ( Re ` 1 ) - ( Re ` A ) ) = ( Re ` ( 1 - A ) ) )
53 48 52 syl5eq
 |-  ( A e. CC -> ( 1 - ( Re ` A ) ) = ( Re ` ( 1 - A ) ) )
54 53 adantr
 |-  ( ( A e. CC /\ ( abs ` A ) = 1 ) -> ( 1 - ( Re ` A ) ) = ( Re ` ( 1 - A ) ) )
55 42 54 breqtrd
 |-  ( ( A e. CC /\ ( abs ` A ) = 1 ) -> 0 <_ ( Re ` ( 1 - A ) ) )
56 argrege0
 |-  ( ( ( 1 - A ) e. CC /\ ( 1 - A ) =/= 0 /\ 0 <_ ( Re ` ( 1 - A ) ) ) -> ( Im ` ( log ` ( 1 - A ) ) ) e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) )
57 56 3coml
 |-  ( ( ( 1 - A ) =/= 0 /\ 0 <_ ( Re ` ( 1 - A ) ) /\ ( 1 - A ) e. CC ) -> ( Im ` ( log ` ( 1 - A ) ) ) e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) )
58 57 3com13
 |-  ( ( ( 1 - A ) e. CC /\ 0 <_ ( Re ` ( 1 - A ) ) /\ ( 1 - A ) =/= 0 ) -> ( Im ` ( log ` ( 1 - A ) ) ) e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) )
59 4 55 14 58 eel12131
 |-  ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( Im ` ( log ` ( 1 - A ) ) ) e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) )
60 iccleub
 |-  ( ( -u ( _pi / 2 ) e. RR* /\ ( _pi / 2 ) e. RR* /\ ( Im ` ( log ` ( 1 - A ) ) ) e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) -> ( Im ` ( log ` ( 1 - A ) ) ) <_ ( _pi / 2 ) )
61 24 25 59 60 mp3an12i
 |-  ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( Im ` ( log ` ( 1 - A ) ) ) <_ ( _pi / 2 ) )
62 pipos
 |-  0 < _pi
63 18 62 elrpii
 |-  _pi e. RR+
64 rphalflt
 |-  ( _pi e. RR+ -> ( _pi / 2 ) < _pi )
65 63 64 ax-mp
 |-  ( _pi / 2 ) < _pi
66 65 a1i
 |-  ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( _pi / 2 ) < _pi )
67 17 22 23 61 66 lelttrd
 |-  ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( Im ` ( log ` ( 1 - A ) ) ) < _pi )
68 17 67 ltned
 |-  ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( Im ` ( log ` ( 1 - A ) ) ) =/= _pi )