| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-1cn |
|- 1 e. CC |
| 2 |
1
|
a1i |
|- ( A e. CC -> 1 e. CC ) |
| 3 |
|
id |
|- ( A e. CC -> A e. CC ) |
| 4 |
2 3
|
subcld |
|- ( A e. CC -> ( 1 - A ) e. CC ) |
| 5 |
4
|
adantr |
|- ( ( A e. CC /\ -. 1 = A ) -> ( 1 - A ) e. CC ) |
| 6 |
|
subeq0 |
|- ( ( 1 e. CC /\ A e. CC ) -> ( ( 1 - A ) = 0 <-> 1 = A ) ) |
| 7 |
6
|
biimpd |
|- ( ( 1 e. CC /\ A e. CC ) -> ( ( 1 - A ) = 0 -> 1 = A ) ) |
| 8 |
7
|
idiALT |
|- ( ( 1 e. CC /\ A e. CC ) -> ( ( 1 - A ) = 0 -> 1 = A ) ) |
| 9 |
1 3 8
|
sylancr |
|- ( A e. CC -> ( ( 1 - A ) = 0 -> 1 = A ) ) |
| 10 |
9
|
con3d |
|- ( A e. CC -> ( -. 1 = A -> -. ( 1 - A ) = 0 ) ) |
| 11 |
|
df-ne |
|- ( ( 1 - A ) =/= 0 <-> -. ( 1 - A ) = 0 ) |
| 12 |
11
|
biimpri |
|- ( -. ( 1 - A ) = 0 -> ( 1 - A ) =/= 0 ) |
| 13 |
10 12
|
syl6 |
|- ( A e. CC -> ( -. 1 = A -> ( 1 - A ) =/= 0 ) ) |
| 14 |
13
|
imp |
|- ( ( A e. CC /\ -. 1 = A ) -> ( 1 - A ) =/= 0 ) |
| 15 |
5 14
|
logcld |
|- ( ( A e. CC /\ -. 1 = A ) -> ( log ` ( 1 - A ) ) e. CC ) |
| 16 |
15
|
imcld |
|- ( ( A e. CC /\ -. 1 = A ) -> ( Im ` ( log ` ( 1 - A ) ) ) e. RR ) |
| 17 |
16
|
3adant2 |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( Im ` ( log ` ( 1 - A ) ) ) e. RR ) |
| 18 |
|
pire |
|- _pi e. RR |
| 19 |
|
2re |
|- 2 e. RR |
| 20 |
|
2ne0 |
|- 2 =/= 0 |
| 21 |
18 19 20
|
redivcli |
|- ( _pi / 2 ) e. RR |
| 22 |
21
|
a1i |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( _pi / 2 ) e. RR ) |
| 23 |
18
|
a1i |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> _pi e. RR ) |
| 24 |
|
neghalfpirx |
|- -u ( _pi / 2 ) e. RR* |
| 25 |
21
|
rexri |
|- ( _pi / 2 ) e. RR* |
| 26 |
3
|
recld |
|- ( A e. CC -> ( Re ` A ) e. RR ) |
| 27 |
26
|
recnd |
|- ( A e. CC -> ( Re ` A ) e. CC ) |
| 28 |
27
|
subidd |
|- ( A e. CC -> ( ( Re ` A ) - ( Re ` A ) ) = 0 ) |
| 29 |
28
|
adantr |
|- ( ( A e. CC /\ ( abs ` A ) = 1 ) -> ( ( Re ` A ) - ( Re ` A ) ) = 0 ) |
| 30 |
|
1re |
|- 1 e. RR |
| 31 |
30
|
a1i |
|- ( 1 e. CC -> 1 e. RR ) |
| 32 |
1 31
|
ax-mp |
|- 1 e. RR |
| 33 |
3
|
releabsd |
|- ( A e. CC -> ( Re ` A ) <_ ( abs ` A ) ) |
| 34 |
33
|
adantr |
|- ( ( A e. CC /\ ( abs ` A ) = 1 ) -> ( Re ` A ) <_ ( abs ` A ) ) |
| 35 |
|
id |
|- ( ( abs ` A ) = 1 -> ( abs ` A ) = 1 ) |
| 36 |
35
|
adantl |
|- ( ( A e. CC /\ ( abs ` A ) = 1 ) -> ( abs ` A ) = 1 ) |
| 37 |
34 36
|
breqtrd |
|- ( ( A e. CC /\ ( abs ` A ) = 1 ) -> ( Re ` A ) <_ 1 ) |
| 38 |
|
lesub1 |
|- ( ( ( Re ` A ) e. RR /\ 1 e. RR /\ ( Re ` A ) e. RR ) -> ( ( Re ` A ) <_ 1 <-> ( ( Re ` A ) - ( Re ` A ) ) <_ ( 1 - ( Re ` A ) ) ) ) |
| 39 |
38
|
3impcombi |
|- ( ( 1 e. RR /\ ( Re ` A ) e. RR /\ ( Re ` A ) <_ 1 ) -> ( ( Re ` A ) - ( Re ` A ) ) <_ ( 1 - ( Re ` A ) ) ) |
| 40 |
39
|
idiALT |
|- ( ( 1 e. RR /\ ( Re ` A ) e. RR /\ ( Re ` A ) <_ 1 ) -> ( ( Re ` A ) - ( Re ` A ) ) <_ ( 1 - ( Re ` A ) ) ) |
| 41 |
32 26 37 40
|
mp3an2ani |
|- ( ( A e. CC /\ ( abs ` A ) = 1 ) -> ( ( Re ` A ) - ( Re ` A ) ) <_ ( 1 - ( Re ` A ) ) ) |
| 42 |
29 41
|
eqbrtrrd |
|- ( ( A e. CC /\ ( abs ` A ) = 1 ) -> 0 <_ ( 1 - ( Re ` A ) ) ) |
| 43 |
32
|
a1i |
|- ( T. -> 1 e. RR ) |
| 44 |
43
|
rered |
|- ( T. -> ( Re ` 1 ) = 1 ) |
| 45 |
44
|
mptru |
|- ( Re ` 1 ) = 1 |
| 46 |
|
oveq1 |
|- ( ( Re ` 1 ) = 1 -> ( ( Re ` 1 ) - ( Re ` A ) ) = ( 1 - ( Re ` A ) ) ) |
| 47 |
46
|
eqcomd |
|- ( ( Re ` 1 ) = 1 -> ( 1 - ( Re ` A ) ) = ( ( Re ` 1 ) - ( Re ` A ) ) ) |
| 48 |
45 47
|
ax-mp |
|- ( 1 - ( Re ` A ) ) = ( ( Re ` 1 ) - ( Re ` A ) ) |
| 49 |
|
resub |
|- ( ( 1 e. CC /\ A e. CC ) -> ( Re ` ( 1 - A ) ) = ( ( Re ` 1 ) - ( Re ` A ) ) ) |
| 50 |
49
|
eqcomd |
|- ( ( 1 e. CC /\ A e. CC ) -> ( ( Re ` 1 ) - ( Re ` A ) ) = ( Re ` ( 1 - A ) ) ) |
| 51 |
50
|
idiALT |
|- ( ( 1 e. CC /\ A e. CC ) -> ( ( Re ` 1 ) - ( Re ` A ) ) = ( Re ` ( 1 - A ) ) ) |
| 52 |
1 3 51
|
sylancr |
|- ( A e. CC -> ( ( Re ` 1 ) - ( Re ` A ) ) = ( Re ` ( 1 - A ) ) ) |
| 53 |
48 52
|
eqtrid |
|- ( A e. CC -> ( 1 - ( Re ` A ) ) = ( Re ` ( 1 - A ) ) ) |
| 54 |
53
|
adantr |
|- ( ( A e. CC /\ ( abs ` A ) = 1 ) -> ( 1 - ( Re ` A ) ) = ( Re ` ( 1 - A ) ) ) |
| 55 |
42 54
|
breqtrd |
|- ( ( A e. CC /\ ( abs ` A ) = 1 ) -> 0 <_ ( Re ` ( 1 - A ) ) ) |
| 56 |
|
argrege0 |
|- ( ( ( 1 - A ) e. CC /\ ( 1 - A ) =/= 0 /\ 0 <_ ( Re ` ( 1 - A ) ) ) -> ( Im ` ( log ` ( 1 - A ) ) ) e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) |
| 57 |
56
|
3coml |
|- ( ( ( 1 - A ) =/= 0 /\ 0 <_ ( Re ` ( 1 - A ) ) /\ ( 1 - A ) e. CC ) -> ( Im ` ( log ` ( 1 - A ) ) ) e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) |
| 58 |
57
|
3com13 |
|- ( ( ( 1 - A ) e. CC /\ 0 <_ ( Re ` ( 1 - A ) ) /\ ( 1 - A ) =/= 0 ) -> ( Im ` ( log ` ( 1 - A ) ) ) e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) |
| 59 |
4 55 14 58
|
eel12131 |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( Im ` ( log ` ( 1 - A ) ) ) e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) |
| 60 |
|
iccleub |
|- ( ( -u ( _pi / 2 ) e. RR* /\ ( _pi / 2 ) e. RR* /\ ( Im ` ( log ` ( 1 - A ) ) ) e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) -> ( Im ` ( log ` ( 1 - A ) ) ) <_ ( _pi / 2 ) ) |
| 61 |
24 25 59 60
|
mp3an12i |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( Im ` ( log ` ( 1 - A ) ) ) <_ ( _pi / 2 ) ) |
| 62 |
|
pipos |
|- 0 < _pi |
| 63 |
18 62
|
elrpii |
|- _pi e. RR+ |
| 64 |
|
rphalflt |
|- ( _pi e. RR+ -> ( _pi / 2 ) < _pi ) |
| 65 |
63 64
|
ax-mp |
|- ( _pi / 2 ) < _pi |
| 66 |
65
|
a1i |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( _pi / 2 ) < _pi ) |
| 67 |
17 22 23 61 66
|
lelttrd |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( Im ` ( log ` ( 1 - A ) ) ) < _pi ) |
| 68 |
17 67
|
ltned |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( Im ` ( log ` ( 1 - A ) ) ) =/= _pi ) |