Metamath Proof Explorer


Theorem isosctrlem1ALT

Description: Lemma for isosctr . This proof was automatically derived by completeusersproof from its Virtual Deduction proof counterpart https://us.metamath.org/other/completeusersproof/isosctrlem1altvd.html . As it is verified by the Metamath program, isosctrlem1ALT verifies https://us.metamath.org/other/completeusersproof/isosctrlem1altvd.html . (Contributed by Alan Sare, 22-Apr-2018) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion isosctrlem1ALT ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → ( ℑ ‘ ( log ‘ ( 1 − 𝐴 ) ) ) ≠ π )

Proof

Step Hyp Ref Expression
1 ax-1cn 1 ∈ ℂ
2 1 a1i ( 𝐴 ∈ ℂ → 1 ∈ ℂ )
3 id ( 𝐴 ∈ ℂ → 𝐴 ∈ ℂ )
4 2 3 subcld ( 𝐴 ∈ ℂ → ( 1 − 𝐴 ) ∈ ℂ )
5 4 adantr ( ( 𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴 ) → ( 1 − 𝐴 ) ∈ ℂ )
6 subeq0 ( ( 1 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( 1 − 𝐴 ) = 0 ↔ 1 = 𝐴 ) )
7 6 biimpd ( ( 1 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( 1 − 𝐴 ) = 0 → 1 = 𝐴 ) )
8 7 idiALT ( ( 1 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( 1 − 𝐴 ) = 0 → 1 = 𝐴 ) )
9 1 3 8 sylancr ( 𝐴 ∈ ℂ → ( ( 1 − 𝐴 ) = 0 → 1 = 𝐴 ) )
10 9 con3d ( 𝐴 ∈ ℂ → ( ¬ 1 = 𝐴 → ¬ ( 1 − 𝐴 ) = 0 ) )
11 df-ne ( ( 1 − 𝐴 ) ≠ 0 ↔ ¬ ( 1 − 𝐴 ) = 0 )
12 11 biimpri ( ¬ ( 1 − 𝐴 ) = 0 → ( 1 − 𝐴 ) ≠ 0 )
13 10 12 syl6 ( 𝐴 ∈ ℂ → ( ¬ 1 = 𝐴 → ( 1 − 𝐴 ) ≠ 0 ) )
14 13 imp ( ( 𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴 ) → ( 1 − 𝐴 ) ≠ 0 )
15 5 14 logcld ( ( 𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴 ) → ( log ‘ ( 1 − 𝐴 ) ) ∈ ℂ )
16 15 imcld ( ( 𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴 ) → ( ℑ ‘ ( log ‘ ( 1 − 𝐴 ) ) ) ∈ ℝ )
17 16 3adant2 ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → ( ℑ ‘ ( log ‘ ( 1 − 𝐴 ) ) ) ∈ ℝ )
18 pire π ∈ ℝ
19 2re 2 ∈ ℝ
20 2ne0 2 ≠ 0
21 18 19 20 redivcli ( π / 2 ) ∈ ℝ
22 21 a1i ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → ( π / 2 ) ∈ ℝ )
23 18 a1i ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → π ∈ ℝ )
24 neghalfpirx - ( π / 2 ) ∈ ℝ*
25 21 rexri ( π / 2 ) ∈ ℝ*
26 3 recld ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℝ )
27 26 recnd ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℂ )
28 27 subidd ( 𝐴 ∈ ℂ → ( ( ℜ ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) = 0 )
29 28 adantr ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ) → ( ( ℜ ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) = 0 )
30 1re 1 ∈ ℝ
31 30 a1i ( 1 ∈ ℂ → 1 ∈ ℝ )
32 1 31 ax-mp 1 ∈ ℝ
33 3 releabsd ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ≤ ( abs ‘ 𝐴 ) )
34 33 adantr ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ) → ( ℜ ‘ 𝐴 ) ≤ ( abs ‘ 𝐴 ) )
35 id ( ( abs ‘ 𝐴 ) = 1 → ( abs ‘ 𝐴 ) = 1 )
36 35 adantl ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ) → ( abs ‘ 𝐴 ) = 1 )
37 34 36 breqtrd ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ) → ( ℜ ‘ 𝐴 ) ≤ 1 )
38 lesub1 ( ( ( ℜ ‘ 𝐴 ) ∈ ℝ ∧ 1 ∈ ℝ ∧ ( ℜ ‘ 𝐴 ) ∈ ℝ ) → ( ( ℜ ‘ 𝐴 ) ≤ 1 ↔ ( ( ℜ ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) ≤ ( 1 − ( ℜ ‘ 𝐴 ) ) ) )
39 38 3impcombi ( ( 1 ∈ ℝ ∧ ( ℜ ‘ 𝐴 ) ∈ ℝ ∧ ( ℜ ‘ 𝐴 ) ≤ 1 ) → ( ( ℜ ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) ≤ ( 1 − ( ℜ ‘ 𝐴 ) ) )
40 39 idiALT ( ( 1 ∈ ℝ ∧ ( ℜ ‘ 𝐴 ) ∈ ℝ ∧ ( ℜ ‘ 𝐴 ) ≤ 1 ) → ( ( ℜ ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) ≤ ( 1 − ( ℜ ‘ 𝐴 ) ) )
41 32 26 37 40 mp3an2ani ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ) → ( ( ℜ ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) ≤ ( 1 − ( ℜ ‘ 𝐴 ) ) )
42 29 41 eqbrtrrd ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ) → 0 ≤ ( 1 − ( ℜ ‘ 𝐴 ) ) )
43 32 a1i ( ⊤ → 1 ∈ ℝ )
44 43 rered ( ⊤ → ( ℜ ‘ 1 ) = 1 )
45 44 mptru ( ℜ ‘ 1 ) = 1
46 oveq1 ( ( ℜ ‘ 1 ) = 1 → ( ( ℜ ‘ 1 ) − ( ℜ ‘ 𝐴 ) ) = ( 1 − ( ℜ ‘ 𝐴 ) ) )
47 46 eqcomd ( ( ℜ ‘ 1 ) = 1 → ( 1 − ( ℜ ‘ 𝐴 ) ) = ( ( ℜ ‘ 1 ) − ( ℜ ‘ 𝐴 ) ) )
48 45 47 ax-mp ( 1 − ( ℜ ‘ 𝐴 ) ) = ( ( ℜ ‘ 1 ) − ( ℜ ‘ 𝐴 ) )
49 resub ( ( 1 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ℜ ‘ ( 1 − 𝐴 ) ) = ( ( ℜ ‘ 1 ) − ( ℜ ‘ 𝐴 ) ) )
50 49 eqcomd ( ( 1 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( ℜ ‘ 1 ) − ( ℜ ‘ 𝐴 ) ) = ( ℜ ‘ ( 1 − 𝐴 ) ) )
51 50 idiALT ( ( 1 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( ℜ ‘ 1 ) − ( ℜ ‘ 𝐴 ) ) = ( ℜ ‘ ( 1 − 𝐴 ) ) )
52 1 3 51 sylancr ( 𝐴 ∈ ℂ → ( ( ℜ ‘ 1 ) − ( ℜ ‘ 𝐴 ) ) = ( ℜ ‘ ( 1 − 𝐴 ) ) )
53 48 52 syl5eq ( 𝐴 ∈ ℂ → ( 1 − ( ℜ ‘ 𝐴 ) ) = ( ℜ ‘ ( 1 − 𝐴 ) ) )
54 53 adantr ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ) → ( 1 − ( ℜ ‘ 𝐴 ) ) = ( ℜ ‘ ( 1 − 𝐴 ) ) )
55 42 54 breqtrd ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ) → 0 ≤ ( ℜ ‘ ( 1 − 𝐴 ) ) )
56 argrege0 ( ( ( 1 − 𝐴 ) ∈ ℂ ∧ ( 1 − 𝐴 ) ≠ 0 ∧ 0 ≤ ( ℜ ‘ ( 1 − 𝐴 ) ) ) → ( ℑ ‘ ( log ‘ ( 1 − 𝐴 ) ) ) ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) )
57 56 3coml ( ( ( 1 − 𝐴 ) ≠ 0 ∧ 0 ≤ ( ℜ ‘ ( 1 − 𝐴 ) ) ∧ ( 1 − 𝐴 ) ∈ ℂ ) → ( ℑ ‘ ( log ‘ ( 1 − 𝐴 ) ) ) ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) )
58 57 3com13 ( ( ( 1 − 𝐴 ) ∈ ℂ ∧ 0 ≤ ( ℜ ‘ ( 1 − 𝐴 ) ) ∧ ( 1 − 𝐴 ) ≠ 0 ) → ( ℑ ‘ ( log ‘ ( 1 − 𝐴 ) ) ) ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) )
59 4 55 14 58 eel12131 ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → ( ℑ ‘ ( log ‘ ( 1 − 𝐴 ) ) ) ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) )
60 iccleub ( ( - ( π / 2 ) ∈ ℝ* ∧ ( π / 2 ) ∈ ℝ* ∧ ( ℑ ‘ ( log ‘ ( 1 − 𝐴 ) ) ) ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ) → ( ℑ ‘ ( log ‘ ( 1 − 𝐴 ) ) ) ≤ ( π / 2 ) )
61 24 25 59 60 mp3an12i ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → ( ℑ ‘ ( log ‘ ( 1 − 𝐴 ) ) ) ≤ ( π / 2 ) )
62 pipos 0 < π
63 18 62 elrpii π ∈ ℝ+
64 rphalflt ( π ∈ ℝ+ → ( π / 2 ) < π )
65 63 64 ax-mp ( π / 2 ) < π
66 65 a1i ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → ( π / 2 ) < π )
67 17 22 23 61 66 lelttrd ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → ( ℑ ‘ ( log ‘ ( 1 − 𝐴 ) ) ) < π )
68 17 67 ltned ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → ( ℑ ‘ ( log ‘ ( 1 − 𝐴 ) ) ) ≠ π )