| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 2 |
1
|
a1i |
⊢ ( 𝐴 ∈ ℂ → 1 ∈ ℂ ) |
| 3 |
|
id |
⊢ ( 𝐴 ∈ ℂ → 𝐴 ∈ ℂ ) |
| 4 |
2 3
|
subcld |
⊢ ( 𝐴 ∈ ℂ → ( 1 − 𝐴 ) ∈ ℂ ) |
| 5 |
4
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴 ) → ( 1 − 𝐴 ) ∈ ℂ ) |
| 6 |
|
subeq0 |
⊢ ( ( 1 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( 1 − 𝐴 ) = 0 ↔ 1 = 𝐴 ) ) |
| 7 |
6
|
biimpd |
⊢ ( ( 1 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( 1 − 𝐴 ) = 0 → 1 = 𝐴 ) ) |
| 8 |
7
|
idiALT |
⊢ ( ( 1 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( 1 − 𝐴 ) = 0 → 1 = 𝐴 ) ) |
| 9 |
1 3 8
|
sylancr |
⊢ ( 𝐴 ∈ ℂ → ( ( 1 − 𝐴 ) = 0 → 1 = 𝐴 ) ) |
| 10 |
9
|
con3d |
⊢ ( 𝐴 ∈ ℂ → ( ¬ 1 = 𝐴 → ¬ ( 1 − 𝐴 ) = 0 ) ) |
| 11 |
|
df-ne |
⊢ ( ( 1 − 𝐴 ) ≠ 0 ↔ ¬ ( 1 − 𝐴 ) = 0 ) |
| 12 |
11
|
biimpri |
⊢ ( ¬ ( 1 − 𝐴 ) = 0 → ( 1 − 𝐴 ) ≠ 0 ) |
| 13 |
10 12
|
syl6 |
⊢ ( 𝐴 ∈ ℂ → ( ¬ 1 = 𝐴 → ( 1 − 𝐴 ) ≠ 0 ) ) |
| 14 |
13
|
imp |
⊢ ( ( 𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴 ) → ( 1 − 𝐴 ) ≠ 0 ) |
| 15 |
5 14
|
logcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴 ) → ( log ‘ ( 1 − 𝐴 ) ) ∈ ℂ ) |
| 16 |
15
|
imcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴 ) → ( ℑ ‘ ( log ‘ ( 1 − 𝐴 ) ) ) ∈ ℝ ) |
| 17 |
16
|
3adant2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → ( ℑ ‘ ( log ‘ ( 1 − 𝐴 ) ) ) ∈ ℝ ) |
| 18 |
|
pire |
⊢ π ∈ ℝ |
| 19 |
|
2re |
⊢ 2 ∈ ℝ |
| 20 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 21 |
18 19 20
|
redivcli |
⊢ ( π / 2 ) ∈ ℝ |
| 22 |
21
|
a1i |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → ( π / 2 ) ∈ ℝ ) |
| 23 |
18
|
a1i |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → π ∈ ℝ ) |
| 24 |
|
neghalfpirx |
⊢ - ( π / 2 ) ∈ ℝ* |
| 25 |
21
|
rexri |
⊢ ( π / 2 ) ∈ ℝ* |
| 26 |
3
|
recld |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℝ ) |
| 27 |
26
|
recnd |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℂ ) |
| 28 |
27
|
subidd |
⊢ ( 𝐴 ∈ ℂ → ( ( ℜ ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) = 0 ) |
| 29 |
28
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ) → ( ( ℜ ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) = 0 ) |
| 30 |
|
1re |
⊢ 1 ∈ ℝ |
| 31 |
30
|
a1i |
⊢ ( 1 ∈ ℂ → 1 ∈ ℝ ) |
| 32 |
1 31
|
ax-mp |
⊢ 1 ∈ ℝ |
| 33 |
3
|
releabsd |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ≤ ( abs ‘ 𝐴 ) ) |
| 34 |
33
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ) → ( ℜ ‘ 𝐴 ) ≤ ( abs ‘ 𝐴 ) ) |
| 35 |
|
id |
⊢ ( ( abs ‘ 𝐴 ) = 1 → ( abs ‘ 𝐴 ) = 1 ) |
| 36 |
35
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ) → ( abs ‘ 𝐴 ) = 1 ) |
| 37 |
34 36
|
breqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ) → ( ℜ ‘ 𝐴 ) ≤ 1 ) |
| 38 |
|
lesub1 |
⊢ ( ( ( ℜ ‘ 𝐴 ) ∈ ℝ ∧ 1 ∈ ℝ ∧ ( ℜ ‘ 𝐴 ) ∈ ℝ ) → ( ( ℜ ‘ 𝐴 ) ≤ 1 ↔ ( ( ℜ ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) ≤ ( 1 − ( ℜ ‘ 𝐴 ) ) ) ) |
| 39 |
38
|
3impcombi |
⊢ ( ( 1 ∈ ℝ ∧ ( ℜ ‘ 𝐴 ) ∈ ℝ ∧ ( ℜ ‘ 𝐴 ) ≤ 1 ) → ( ( ℜ ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) ≤ ( 1 − ( ℜ ‘ 𝐴 ) ) ) |
| 40 |
39
|
idiALT |
⊢ ( ( 1 ∈ ℝ ∧ ( ℜ ‘ 𝐴 ) ∈ ℝ ∧ ( ℜ ‘ 𝐴 ) ≤ 1 ) → ( ( ℜ ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) ≤ ( 1 − ( ℜ ‘ 𝐴 ) ) ) |
| 41 |
32 26 37 40
|
mp3an2ani |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ) → ( ( ℜ ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) ≤ ( 1 − ( ℜ ‘ 𝐴 ) ) ) |
| 42 |
29 41
|
eqbrtrrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ) → 0 ≤ ( 1 − ( ℜ ‘ 𝐴 ) ) ) |
| 43 |
32
|
a1i |
⊢ ( ⊤ → 1 ∈ ℝ ) |
| 44 |
43
|
rered |
⊢ ( ⊤ → ( ℜ ‘ 1 ) = 1 ) |
| 45 |
44
|
mptru |
⊢ ( ℜ ‘ 1 ) = 1 |
| 46 |
|
oveq1 |
⊢ ( ( ℜ ‘ 1 ) = 1 → ( ( ℜ ‘ 1 ) − ( ℜ ‘ 𝐴 ) ) = ( 1 − ( ℜ ‘ 𝐴 ) ) ) |
| 47 |
46
|
eqcomd |
⊢ ( ( ℜ ‘ 1 ) = 1 → ( 1 − ( ℜ ‘ 𝐴 ) ) = ( ( ℜ ‘ 1 ) − ( ℜ ‘ 𝐴 ) ) ) |
| 48 |
45 47
|
ax-mp |
⊢ ( 1 − ( ℜ ‘ 𝐴 ) ) = ( ( ℜ ‘ 1 ) − ( ℜ ‘ 𝐴 ) ) |
| 49 |
|
resub |
⊢ ( ( 1 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ℜ ‘ ( 1 − 𝐴 ) ) = ( ( ℜ ‘ 1 ) − ( ℜ ‘ 𝐴 ) ) ) |
| 50 |
49
|
eqcomd |
⊢ ( ( 1 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( ℜ ‘ 1 ) − ( ℜ ‘ 𝐴 ) ) = ( ℜ ‘ ( 1 − 𝐴 ) ) ) |
| 51 |
50
|
idiALT |
⊢ ( ( 1 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( ℜ ‘ 1 ) − ( ℜ ‘ 𝐴 ) ) = ( ℜ ‘ ( 1 − 𝐴 ) ) ) |
| 52 |
1 3 51
|
sylancr |
⊢ ( 𝐴 ∈ ℂ → ( ( ℜ ‘ 1 ) − ( ℜ ‘ 𝐴 ) ) = ( ℜ ‘ ( 1 − 𝐴 ) ) ) |
| 53 |
48 52
|
eqtrid |
⊢ ( 𝐴 ∈ ℂ → ( 1 − ( ℜ ‘ 𝐴 ) ) = ( ℜ ‘ ( 1 − 𝐴 ) ) ) |
| 54 |
53
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ) → ( 1 − ( ℜ ‘ 𝐴 ) ) = ( ℜ ‘ ( 1 − 𝐴 ) ) ) |
| 55 |
42 54
|
breqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ) → 0 ≤ ( ℜ ‘ ( 1 − 𝐴 ) ) ) |
| 56 |
|
argrege0 |
⊢ ( ( ( 1 − 𝐴 ) ∈ ℂ ∧ ( 1 − 𝐴 ) ≠ 0 ∧ 0 ≤ ( ℜ ‘ ( 1 − 𝐴 ) ) ) → ( ℑ ‘ ( log ‘ ( 1 − 𝐴 ) ) ) ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ) |
| 57 |
56
|
3coml |
⊢ ( ( ( 1 − 𝐴 ) ≠ 0 ∧ 0 ≤ ( ℜ ‘ ( 1 − 𝐴 ) ) ∧ ( 1 − 𝐴 ) ∈ ℂ ) → ( ℑ ‘ ( log ‘ ( 1 − 𝐴 ) ) ) ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ) |
| 58 |
57
|
3com13 |
⊢ ( ( ( 1 − 𝐴 ) ∈ ℂ ∧ 0 ≤ ( ℜ ‘ ( 1 − 𝐴 ) ) ∧ ( 1 − 𝐴 ) ≠ 0 ) → ( ℑ ‘ ( log ‘ ( 1 − 𝐴 ) ) ) ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ) |
| 59 |
4 55 14 58
|
eel12131 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → ( ℑ ‘ ( log ‘ ( 1 − 𝐴 ) ) ) ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ) |
| 60 |
|
iccleub |
⊢ ( ( - ( π / 2 ) ∈ ℝ* ∧ ( π / 2 ) ∈ ℝ* ∧ ( ℑ ‘ ( log ‘ ( 1 − 𝐴 ) ) ) ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ) → ( ℑ ‘ ( log ‘ ( 1 − 𝐴 ) ) ) ≤ ( π / 2 ) ) |
| 61 |
24 25 59 60
|
mp3an12i |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → ( ℑ ‘ ( log ‘ ( 1 − 𝐴 ) ) ) ≤ ( π / 2 ) ) |
| 62 |
|
pipos |
⊢ 0 < π |
| 63 |
18 62
|
elrpii |
⊢ π ∈ ℝ+ |
| 64 |
|
rphalflt |
⊢ ( π ∈ ℝ+ → ( π / 2 ) < π ) |
| 65 |
63 64
|
ax-mp |
⊢ ( π / 2 ) < π |
| 66 |
65
|
a1i |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → ( π / 2 ) < π ) |
| 67 |
17 22 23 61 66
|
lelttrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → ( ℑ ‘ ( log ‘ ( 1 − 𝐴 ) ) ) < π ) |
| 68 |
17 67
|
ltned |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → ( ℑ ‘ ( log ‘ ( 1 − 𝐴 ) ) ) ≠ π ) |