| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-1cn |
|
| 2 |
1
|
a1i |
|
| 3 |
|
id |
|
| 4 |
2 3
|
subcld |
|
| 5 |
4
|
adantr |
|
| 6 |
|
subeq0 |
|
| 7 |
6
|
biimpd |
|
| 8 |
7
|
idiALT |
|
| 9 |
1 3 8
|
sylancr |
|
| 10 |
9
|
con3d |
|
| 11 |
|
df-ne |
|
| 12 |
11
|
biimpri |
|
| 13 |
10 12
|
syl6 |
|
| 14 |
13
|
imp |
|
| 15 |
5 14
|
logcld |
|
| 16 |
15
|
imcld |
|
| 17 |
16
|
3adant2 |
|
| 18 |
|
pire |
|
| 19 |
|
2re |
|
| 20 |
|
2ne0 |
|
| 21 |
18 19 20
|
redivcli |
|
| 22 |
21
|
a1i |
|
| 23 |
18
|
a1i |
|
| 24 |
|
neghalfpirx |
|
| 25 |
21
|
rexri |
|
| 26 |
3
|
recld |
|
| 27 |
26
|
recnd |
|
| 28 |
27
|
subidd |
|
| 29 |
28
|
adantr |
|
| 30 |
|
1re |
|
| 31 |
30
|
a1i |
|
| 32 |
1 31
|
ax-mp |
|
| 33 |
3
|
releabsd |
|
| 34 |
33
|
adantr |
|
| 35 |
|
id |
|
| 36 |
35
|
adantl |
|
| 37 |
34 36
|
breqtrd |
|
| 38 |
|
lesub1 |
|
| 39 |
38
|
3impcombi |
|
| 40 |
39
|
idiALT |
|
| 41 |
32 26 37 40
|
mp3an2ani |
|
| 42 |
29 41
|
eqbrtrrd |
|
| 43 |
32
|
a1i |
|
| 44 |
43
|
rered |
|
| 45 |
44
|
mptru |
|
| 46 |
|
oveq1 |
|
| 47 |
46
|
eqcomd |
|
| 48 |
45 47
|
ax-mp |
|
| 49 |
|
resub |
|
| 50 |
49
|
eqcomd |
|
| 51 |
50
|
idiALT |
|
| 52 |
1 3 51
|
sylancr |
|
| 53 |
48 52
|
eqtrid |
|
| 54 |
53
|
adantr |
|
| 55 |
42 54
|
breqtrd |
|
| 56 |
|
argrege0 |
|
| 57 |
56
|
3coml |
|
| 58 |
57
|
3com13 |
|
| 59 |
4 55 14 58
|
eel12131 |
|
| 60 |
|
iccleub |
|
| 61 |
24 25 59 60
|
mp3an12i |
|
| 62 |
|
pipos |
|
| 63 |
18 62
|
elrpii |
|
| 64 |
|
rphalflt |
|
| 65 |
63 64
|
ax-mp |
|
| 66 |
65
|
a1i |
|
| 67 |
17 22 23 61 66
|
lelttrd |
|
| 68 |
17 67
|
ltned |
|