Metamath Proof Explorer


Theorem isosctrlem1ALT

Description: Lemma for isosctr . This proof was automatically derived by completeusersproof from its Virtual Deduction proof counterpart https://us.metamath.org/other/completeusersproof/isosctrlem1altvd.html . As it is verified by the Metamath program, isosctrlem1ALT verifies https://us.metamath.org/other/completeusersproof/isosctrlem1altvd.html . (Contributed by Alan Sare, 22-Apr-2018) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion isosctrlem1ALT A A = 1 ¬ 1 = A log 1 A π

Proof

Step Hyp Ref Expression
1 ax-1cn 1
2 1 a1i A 1
3 id A A
4 2 3 subcld A 1 A
5 4 adantr A ¬ 1 = A 1 A
6 subeq0 1 A 1 A = 0 1 = A
7 6 biimpd 1 A 1 A = 0 1 = A
8 7 idiALT 1 A 1 A = 0 1 = A
9 1 3 8 sylancr A 1 A = 0 1 = A
10 9 con3d A ¬ 1 = A ¬ 1 A = 0
11 df-ne 1 A 0 ¬ 1 A = 0
12 11 biimpri ¬ 1 A = 0 1 A 0
13 10 12 syl6 A ¬ 1 = A 1 A 0
14 13 imp A ¬ 1 = A 1 A 0
15 5 14 logcld A ¬ 1 = A log 1 A
16 15 imcld A ¬ 1 = A log 1 A
17 16 3adant2 A A = 1 ¬ 1 = A log 1 A
18 pire π
19 2re 2
20 2ne0 2 0
21 18 19 20 redivcli π 2
22 21 a1i A A = 1 ¬ 1 = A π 2
23 18 a1i A A = 1 ¬ 1 = A π
24 neghalfpirx π 2 *
25 21 rexri π 2 *
26 3 recld A A
27 26 recnd A A
28 27 subidd A A A = 0
29 28 adantr A A = 1 A A = 0
30 1re 1
31 30 a1i 1 1
32 1 31 ax-mp 1
33 3 releabsd A A A
34 33 adantr A A = 1 A A
35 id A = 1 A = 1
36 35 adantl A A = 1 A = 1
37 34 36 breqtrd A A = 1 A 1
38 lesub1 A 1 A A 1 A A 1 A
39 38 3impcombi 1 A A 1 A A 1 A
40 39 idiALT 1 A A 1 A A 1 A
41 32 26 37 40 mp3an2ani A A = 1 A A 1 A
42 29 41 eqbrtrrd A A = 1 0 1 A
43 32 a1i 1
44 43 rered 1 = 1
45 44 mptru 1 = 1
46 oveq1 1 = 1 1 A = 1 A
47 46 eqcomd 1 = 1 1 A = 1 A
48 45 47 ax-mp 1 A = 1 A
49 resub 1 A 1 A = 1 A
50 49 eqcomd 1 A 1 A = 1 A
51 50 idiALT 1 A 1 A = 1 A
52 1 3 51 sylancr A 1 A = 1 A
53 48 52 syl5eq A 1 A = 1 A
54 53 adantr A A = 1 1 A = 1 A
55 42 54 breqtrd A A = 1 0 1 A
56 argrege0 1 A 1 A 0 0 1 A log 1 A π 2 π 2
57 56 3coml 1 A 0 0 1 A 1 A log 1 A π 2 π 2
58 57 3com13 1 A 0 1 A 1 A 0 log 1 A π 2 π 2
59 4 55 14 58 eel12131 A A = 1 ¬ 1 = A log 1 A π 2 π 2
60 iccleub π 2 * π 2 * log 1 A π 2 π 2 log 1 A π 2
61 24 25 59 60 mp3an12i A A = 1 ¬ 1 = A log 1 A π 2
62 pipos 0 < π
63 18 62 elrpii π +
64 rphalflt π + π 2 < π
65 63 64 ax-mp π 2 < π
66 65 a1i A A = 1 ¬ 1 = A π 2 < π
67 17 22 23 61 66 lelttrd A A = 1 ¬ 1 = A log 1 A < π
68 17 67 ltned A A = 1 ¬ 1 = A log 1 A π