Metamath Proof Explorer


Theorem 2sbcrexOLD

Description: Exchange an existential quantifier with two substitutions. (Contributed by Stefan O'Rear, 11-Oct-2014) Obsolete as of 24-Aug-2018. Use csbov123 instead. (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses 2sbcrex.1 A V
2sbcrex.2 B V
Assertion 2sbcrexOLD [˙A / a]˙ [˙B / b]˙ c C φ c C [˙A / a]˙ [˙B / b]˙ φ

Proof

Step Hyp Ref Expression
1 2sbcrex.1 A V
2 2sbcrex.2 B V
3 sbcrexgOLD B V [˙B / b]˙ c C φ c C [˙B / b]˙ φ
4 2 3 ax-mp [˙B / b]˙ c C φ c C [˙B / b]˙ φ
5 4 sbcbii [˙A / a]˙ [˙B / b]˙ c C φ [˙A / a]˙ c C [˙B / b]˙ φ
6 sbcrexgOLD A V [˙A / a]˙ c C [˙B / b]˙ φ c C [˙A / a]˙ [˙B / b]˙ φ
7 1 6 ax-mp [˙A / a]˙ c C [˙B / b]˙ φ c C [˙A / a]˙ [˙B / b]˙ φ
8 5 7 bitri [˙A / a]˙ [˙B / b]˙ c C φ c C [˙A / a]˙ [˙B / b]˙ φ