Metamath Proof Explorer


Theorem 2sbcrexOLD

Description: Exchange an existential quantifier with two substitutions. (Contributed by Stefan O'Rear, 11-Oct-2014) Obsolete as of 24-Aug-2018. Use csbov123 instead. (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses 2sbcrex.1 AV
2sbcrex.2 BV
Assertion 2sbcrexOLD [˙A/a]˙[˙B/b]˙cCφcC[˙A/a]˙[˙B/b]˙φ

Proof

Step Hyp Ref Expression
1 2sbcrex.1 AV
2 2sbcrex.2 BV
3 sbcrexgOLD BV[˙B/b]˙cCφcC[˙B/b]˙φ
4 2 3 ax-mp [˙B/b]˙cCφcC[˙B/b]˙φ
5 4 sbcbii [˙A/a]˙[˙B/b]˙cCφ[˙A/a]˙cC[˙B/b]˙φ
6 sbcrexgOLD AV[˙A/a]˙cC[˙B/b]˙φcC[˙A/a]˙[˙B/b]˙φ
7 1 6 ax-mp [˙A/a]˙cC[˙B/b]˙φcC[˙A/a]˙[˙B/b]˙φ
8 5 7 bitri [˙A/a]˙[˙B/b]˙cCφcC[˙A/a]˙[˙B/b]˙φ