Metamath Proof Explorer


Theorem 2strbas

Description: The base set of a constructed two-slot structure. (Contributed by Mario Carneiro, 29-Aug-2015) Use the index-independent version 2strbas1 instead. (New usage is discouraged.)

Ref Expression
Hypotheses 2str.g G = Base ndx B E ndx + ˙
2str.e E = Slot N
2str.l 1 < N
2str.n N
Assertion 2strbas B V B = Base G

Proof

Step Hyp Ref Expression
1 2str.g G = Base ndx B E ndx + ˙
2 2str.e E = Slot N
3 2str.l 1 < N
4 2str.n N
5 1 2 3 4 2strstr G Struct 1 N
6 baseid Base = Slot Base ndx
7 snsspr1 Base ndx B Base ndx B E ndx + ˙
8 7 1 sseqtrri Base ndx B G
9 5 6 8 strfv B V B = Base G