Metamath Proof Explorer


Theorem 2strop1

Description: The other slot of a constructed two-slot structure. Version of 2strop not depending on the hard-coded index value of the base set. (Contributed by AV, 22-Sep-2020)

Ref Expression
Hypotheses 2str1.g G=BasendxBN+˙
2str1.b Basendx<N
2str1.n N
2str1.e E=SlotN
Assertion 2strop1 +˙V+˙=EG

Proof

Step Hyp Ref Expression
1 2str1.g G=BasendxBN+˙
2 2str1.b Basendx<N
3 2str1.n N
4 2str1.e E=SlotN
5 1 2 3 2strstr1 GStructBasendxN
6 4 3 ndxid E=SlotEndx
7 snsspr2 N+˙BasendxBN+˙
8 4 3 ndxarg Endx=N
9 8 opeq1i Endx+˙=N+˙
10 9 sneqi Endx+˙=N+˙
11 7 10 1 3sstr4i Endx+˙G
12 5 6 11 strfv +˙V+˙=EG