Metamath Proof Explorer


Theorem 2strstr1OLD

Description: Obsolete version of 2strstr1 as of 27-Oct-2024. A constructed two-slot structure. Version of 2strstr not depending on the hard-coded index value of the base set. (Contributed by AV, 22-Sep-2020) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses 2str1.g G=BasendxBN+˙
2str1.b Basendx<N
2str1.n N
Assertion 2strstr1OLD GStructBasendxN

Proof

Step Hyp Ref Expression
1 2str1.g G=BasendxBN+˙
2 2str1.b Basendx<N
3 2str1.n N
4 eqid SlotN=SlotN
5 4 3 ndxarg SlotNndx=N
6 5 eqcomi N=SlotNndx
7 6 opeq1i N+˙=SlotNndx+˙
8 7 preq2i BasendxBN+˙=BasendxBSlotNndx+˙
9 1 8 eqtri G=BasendxBSlotNndx+˙
10 basendx Basendx=1
11 10 2 eqbrtrri 1<N
12 9 4 11 3 2strstr GStruct1N
13 10 opeq1i BasendxN=1N
14 12 13 breqtrri GStructBasendxN