h1:: | |- ( ch <-> ( E. x E. y ( ( x = u /\ y =
v ) /\ ph ) /\ E. x E. y ( ( x = u /\ y = v ) /\ ps ) ) )
|
100:1: | |- ( ch -> ( E. x E. y ( ( x = u /\ y =
v ) /\ ph ) /\ E. x E. y ( ( x = u /\ y = v ) /\ ps ) ) )
|
2:100: | |- (. ch ->. ( E. x E. y ( ( x = u /\ y
= v ) /\ ph ) /\ E. x E. y ( ( x = u /\ y = v ) /\ ps ) ) ).
|
3:2: | |- (. ch ->. E. x E. y ( ( x = u /\ y =
v ) /\ ph ) ).
|
4:3: | |- (. ch ->. E. x E. y ( x = u /\ y = v
) ).
|
5:4: | |- (. ch ->. ( -. A. x x = y \/ u = v )
).
|
6:5: | |- (. ch ->. ( [ u / x ] [ v / y ] ph
<-> E. x E. y ( ( x = u /\ y = v ) /\ ph ) ) ).
|
7:3,6: | |- (. ch ->. [ u / x ] [ v / y ] ph ).
|
8:2: | |- (. ch ->. E. x E. y ( ( x = u /\ y =
v ) /\ ps ) ).
|
9:5: | |- (. ch ->. ( [ u / x ] [ v / y ] ps
<-> E. x E. y ( ( x = u /\ y = v ) /\ ps ) ) ).
|
10:8,9: | |- (. ch ->. [ u / x ] [ v / y ] ps ).
|
101:: | |- ( [ v / y ] ( ph /\ ps ) <-> ( [ v /
y ] ph /\ [ v / y ] ps ) )
|
102:101: | |- ( [ u / x ] [ v / y ] ( ph /\ ps )
<-> [ u / x ] ( [ v / y ] ph /\ [ v / y ] ps ) )
|
103:: | |- ( [ u / x ] ( [ v / y ] ph /\ [ v / y
] ps ) <-> ( [ u / x ] [ v / y ] ph /\ [ u / x ] [ v / y ] ps ) )
|
104:102,103: | |- ( [ u / x ] [ v / y ] ( ph /\ ps )
<-> ( [ u / x ] [ v / y ] ph /\ [ u / x ] [ v / y ] ps ) )
|
11:7,10,104: | |- (. ch ->. [ u / x ] [ v / y ] ( ph /\
ps ) ).
|
110:5: | |- (. ch ->. ( [ u / x ] [ v / y ] ( ph
/\ ps ) <-> E. x E. y ( ( x = u /\ y = v ) /\ ( ph /\ ps ) ) ) ).
|
12:11,110: | |- (. ch ->. E. x E. y ( ( x = u /\ y =
v ) /\ ( ph /\ ps ) ) ).
|
120:12: | |- ( ch -> E. x E. y ( ( x = u /\ y = v
) /\ ( ph /\ ps ) ) )
|
13:1,120: | |- ( ( E. x E. y ( ( x = u /\ y = v ) /\
ph ) /\ E. x E. y ( ( x = u /\ y = v ) /\ ps ) ) ->
E. x E. y ( ( x = u
/\ y = v ) /\ ( ph /\ ps ) ) )
|
14:: | |- (. ( ( x = u /\ y = v ) /\ ( ph /\ ps
) ) ->. ( ( x = u /\ y = v ) /\ ( ph /\ ps ) ) ).
|
15:14: | |- (. ( ( x = u /\ y = v ) /\ ( ph /\ ps
) ) ->. ( x = u /\ y = v ) ).
|
16:14: | |- (. ( ( x = u /\ y = v ) /\ ( ph /\ ps
) ) ->. ( ph /\ ps ) ).
|
17:16: | |- (. ( ( x = u /\ y = v ) /\ ( ph /\ ps
) ) ->. ph ).
|
18:15,17: | |- (. ( ( x = u /\ y = v ) /\ ( ph /\ ps
) ) ->. ( ( x = u /\ y = v ) /\ ph ) ).
|
19:18: | |- ( ( ( x = u /\ y = v ) /\ ( ph /\ ps
) ) -> ( ( x = u /\ y = v ) /\ ph ) )
|
20:19: | |- ( E. y ( ( x = u /\ y = v ) /\ ( ph
/\ ps ) ) -> E. y ( ( x = u /\ y = v ) /\ ph ) )
|
21:20: | |- ( E. x E. y ( ( x = u /\ y = v ) /\ (
ph /\ ps ) ) -> E. x E. y ( ( x = u /\ y = v ) /\ ph ) )
|
22:16: | |- (. ( ( x = u /\ y = v ) /\ ( ph /\ ps
) ) ->. ps ).
|
23:15,22: | |- (. ( ( x = u /\ y = v ) /\ ( ph /\ ps
) ) ->. ( ( x = u /\ y = v ) /\ ps ) ).
|
24:23: | |- ( ( ( x = u /\ y = v ) /\ ( ph /\ ps
) ) -> ( ( x = u /\ y = v ) /\ ps ) )
|
25:24: | |- ( E. y ( ( x = u /\ y = v ) /\ ( ph
/\ ps ) ) -> E. y ( ( x = u /\ y = v ) /\ ps ) )
|
26:25: | |- ( E. x E. y ( ( x = u /\ y = v ) /\ (
ph /\ ps ) ) -> E. x E. y ( ( x = u /\ y = v ) /\ ps ) )
|
27:21,26: | |- ( E. x E. y ( ( x = u /\ y = v ) /\ (
ph /\ ps ) ) -> ( E. x E. y ( ( x = u /\ y = v ) /\ ph ) /\
E. x E. y (
( x = u /\ y = v ) /\ ps ) ) )
|
qed:13,27: | |- ( E. x E. y ( ( x = u /\ y = v ) /\ (
ph /\ ps ) ) <-> ( E. x E. y ( ( x = u /\ y = v ) /\ ph ) /\
E. x E. y (
( x = u /\ y = v ) /\ ps ) ) )
|