Metamath Proof Explorer


Theorem 2uasbanhVD

Description: The following User's Proof is a Virtual Deduction proof (see wvd1 ) completed automatically by a Metamath tools program invoking mmj2 and the Metamath Proof Assistant. 2uasbanh is 2uasbanhVD without virtual deductions and was automatically derived from 2uasbanhVD . (Contributed by Alan Sare, 31-May-2014) (Proof modification is discouraged.) (New usage is discouraged.)

h1:: |- ( ch <-> ( E. x E. y ( ( x = u /\ y = v ) /\ ph ) /\ E. x E. y ( ( x = u /\ y = v ) /\ ps ) ) )
100:1: |- ( ch -> ( E. x E. y ( ( x = u /\ y = v ) /\ ph ) /\ E. x E. y ( ( x = u /\ y = v ) /\ ps ) ) )
2:100: |- (. ch ->. ( E. x E. y ( ( x = u /\ y = v ) /\ ph ) /\ E. x E. y ( ( x = u /\ y = v ) /\ ps ) ) ).
3:2: |- (. ch ->. E. x E. y ( ( x = u /\ y = v ) /\ ph ) ).
4:3: |- (. ch ->. E. x E. y ( x = u /\ y = v ) ).
5:4: |- (. ch ->. ( -. A. x x = y \/ u = v ) ).
6:5: |- (. ch ->. ( [ u / x ] [ v / y ] ph <-> E. x E. y ( ( x = u /\ y = v ) /\ ph ) ) ).
7:3,6: |- (. ch ->. [ u / x ] [ v / y ] ph ).
8:2: |- (. ch ->. E. x E. y ( ( x = u /\ y = v ) /\ ps ) ).
9:5: |- (. ch ->. ( [ u / x ] [ v / y ] ps <-> E. x E. y ( ( x = u /\ y = v ) /\ ps ) ) ).
10:8,9: |- (. ch ->. [ u / x ] [ v / y ] ps ).
101:: |- ( [ v / y ] ( ph /\ ps ) <-> ( [ v / y ] ph /\ [ v / y ] ps ) )
102:101: |- ( [ u / x ] [ v / y ] ( ph /\ ps ) <-> [ u / x ] ( [ v / y ] ph /\ [ v / y ] ps ) )
103:: |- ( [ u / x ] ( [ v / y ] ph /\ [ v / y ] ps ) <-> ( [ u / x ] [ v / y ] ph /\ [ u / x ] [ v / y ] ps ) )
104:102,103: |- ( [ u / x ] [ v / y ] ( ph /\ ps ) <-> ( [ u / x ] [ v / y ] ph /\ [ u / x ] [ v / y ] ps ) )
11:7,10,104: |- (. ch ->. [ u / x ] [ v / y ] ( ph /\ ps ) ).
110:5: |- (. ch ->. ( [ u / x ] [ v / y ] ( ph /\ ps ) <-> E. x E. y ( ( x = u /\ y = v ) /\ ( ph /\ ps ) ) ) ).
12:11,110: |- (. ch ->. E. x E. y ( ( x = u /\ y = v ) /\ ( ph /\ ps ) ) ).
120:12: |- ( ch -> E. x E. y ( ( x = u /\ y = v ) /\ ( ph /\ ps ) ) )
13:1,120: |- ( ( E. x E. y ( ( x = u /\ y = v ) /\ ph ) /\ E. x E. y ( ( x = u /\ y = v ) /\ ps ) ) -> E. x E. y ( ( x = u /\ y = v ) /\ ( ph /\ ps ) ) )
14:: |- (. ( ( x = u /\ y = v ) /\ ( ph /\ ps ) ) ->. ( ( x = u /\ y = v ) /\ ( ph /\ ps ) ) ).
15:14: |- (. ( ( x = u /\ y = v ) /\ ( ph /\ ps ) ) ->. ( x = u /\ y = v ) ).
16:14: |- (. ( ( x = u /\ y = v ) /\ ( ph /\ ps ) ) ->. ( ph /\ ps ) ).
17:16: |- (. ( ( x = u /\ y = v ) /\ ( ph /\ ps ) ) ->. ph ).
18:15,17: |- (. ( ( x = u /\ y = v ) /\ ( ph /\ ps ) ) ->. ( ( x = u /\ y = v ) /\ ph ) ).
19:18: |- ( ( ( x = u /\ y = v ) /\ ( ph /\ ps ) ) -> ( ( x = u /\ y = v ) /\ ph ) )
20:19: |- ( E. y ( ( x = u /\ y = v ) /\ ( ph /\ ps ) ) -> E. y ( ( x = u /\ y = v ) /\ ph ) )
21:20: |- ( E. x E. y ( ( x = u /\ y = v ) /\ ( ph /\ ps ) ) -> E. x E. y ( ( x = u /\ y = v ) /\ ph ) )
22:16: |- (. ( ( x = u /\ y = v ) /\ ( ph /\ ps ) ) ->. ps ).
23:15,22: |- (. ( ( x = u /\ y = v ) /\ ( ph /\ ps ) ) ->. ( ( x = u /\ y = v ) /\ ps ) ).
24:23: |- ( ( ( x = u /\ y = v ) /\ ( ph /\ ps ) ) -> ( ( x = u /\ y = v ) /\ ps ) )
25:24: |- ( E. y ( ( x = u /\ y = v ) /\ ( ph /\ ps ) ) -> E. y ( ( x = u /\ y = v ) /\ ps ) )
26:25: |- ( E. x E. y ( ( x = u /\ y = v ) /\ ( ph /\ ps ) ) -> E. x E. y ( ( x = u /\ y = v ) /\ ps ) )
27:21,26: |- ( E. x E. y ( ( x = u /\ y = v ) /\ ( ph /\ ps ) ) -> ( E. x E. y ( ( x = u /\ y = v ) /\ ph ) /\ E. x E. y ( ( x = u /\ y = v ) /\ ps ) ) )
qed:13,27: |- ( E. x E. y ( ( x = u /\ y = v ) /\ ( ph /\ ps ) ) <-> ( E. x E. y ( ( x = u /\ y = v ) /\ ph ) /\ E. x E. y ( ( x = u /\ y = v ) /\ ps ) ) )

Ref Expression
Hypothesis 2uasbanhVD.1 χxyx=uy=vφxyx=uy=vψ
Assertion 2uasbanhVD xyx=uy=vφψxyx=uy=vφxyx=uy=vψ

Proof

Step Hyp Ref Expression
1 2uasbanhVD.1 χxyx=uy=vφxyx=uy=vψ
2 idn1 x=uy=vφψx=uy=vφψ
3 simpl x=uy=vφψx=uy=v
4 2 3 e1a x=uy=vφψx=uy=v
5 simpr x=uy=vφψφψ
6 2 5 e1a x=uy=vφψφψ
7 simpl φψφ
8 6 7 e1a x=uy=vφψφ
9 pm3.2 x=uy=vφx=uy=vφ
10 4 8 9 e11 x=uy=vφψx=uy=vφ
11 10 in1 x=uy=vφψx=uy=vφ
12 11 eximi yx=uy=vφψyx=uy=vφ
13 12 eximi xyx=uy=vφψxyx=uy=vφ
14 simpr φψψ
15 6 14 e1a x=uy=vφψψ
16 pm3.2 x=uy=vψx=uy=vψ
17 4 15 16 e11 x=uy=vφψx=uy=vψ
18 17 in1 x=uy=vφψx=uy=vψ
19 18 eximi yx=uy=vφψyx=uy=vψ
20 19 eximi xyx=uy=vφψxyx=uy=vψ
21 13 20 jca xyx=uy=vφψxyx=uy=vφxyx=uy=vψ
22 1 biimpi χxyx=uy=vφxyx=uy=vψ
23 22 dfvd1ir χxyx=uy=vφxyx=uy=vψ
24 simpl xyx=uy=vφxyx=uy=vψxyx=uy=vφ
25 23 24 e1a χxyx=uy=vφ
26 simpl x=uy=vφx=uy=v
27 26 2eximi xyx=uy=vφxyx=uy=v
28 25 27 e1a χxyx=uy=v
29 ax6e2ndeq ¬xx=yu=vxyx=uy=v
30 29 biimpri xyx=uy=v¬xx=yu=v
31 28 30 e1a χ¬xx=yu=v
32 2sb5nd ¬xx=yu=vuxvyφxyx=uy=vφ
33 31 32 e1a χuxvyφxyx=uy=vφ
34 biimpr uxvyφxyx=uy=vφxyx=uy=vφuxvyφ
35 34 com12 xyx=uy=vφuxvyφxyx=uy=vφuxvyφ
36 25 33 35 e11 χuxvyφ
37 simpr xyx=uy=vφxyx=uy=vψxyx=uy=vψ
38 23 37 e1a χxyx=uy=vψ
39 2sb5nd ¬xx=yu=vuxvyψxyx=uy=vψ
40 31 39 e1a χuxvyψxyx=uy=vψ
41 biimpr uxvyψxyx=uy=vψxyx=uy=vψuxvyψ
42 41 com12 xyx=uy=vψuxvyψxyx=uy=vψuxvyψ
43 38 40 42 e11 χuxvyψ
44 sban vyφψvyφvyψ
45 44 sbbii uxvyφψuxvyφvyψ
46 sban uxvyφvyψuxvyφuxvyψ
47 45 46 bitri uxvyφψuxvyφuxvyψ
48 simplbi2comt uxvyφψuxvyφuxvyψuxvyψuxvyφuxvyφψ
49 48 com13 uxvyφuxvyψuxvyφψuxvyφuxvyψuxvyφψ
50 36 43 47 49 e110 χuxvyφψ
51 2sb5nd ¬xx=yu=vuxvyφψxyx=uy=vφψ
52 31 51 e1a χuxvyφψxyx=uy=vφψ
53 biimp uxvyφψxyx=uy=vφψuxvyφψxyx=uy=vφψ
54 53 com12 uxvyφψuxvyφψxyx=uy=vφψxyx=uy=vφψ
55 50 52 54 e11 χxyx=uy=vφψ
56 55 in1 χxyx=uy=vφψ
57 1 56 sylbir xyx=uy=vφxyx=uy=vψxyx=uy=vφψ
58 21 57 impbii xyx=uy=vφψxyx=uy=vφxyx=uy=vψ