| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2uasbanhVD.1 |
|- ( ch <-> ( E. x E. y ( ( x = u /\ y = v ) /\ ph ) /\ E. x E. y ( ( x = u /\ y = v ) /\ ps ) ) ) |
| 2 |
|
idn1 |
|- (. ( ( x = u /\ y = v ) /\ ( ph /\ ps ) ) ->. ( ( x = u /\ y = v ) /\ ( ph /\ ps ) ) ). |
| 3 |
|
simpl |
|- ( ( ( x = u /\ y = v ) /\ ( ph /\ ps ) ) -> ( x = u /\ y = v ) ) |
| 4 |
2 3
|
e1a |
|- (. ( ( x = u /\ y = v ) /\ ( ph /\ ps ) ) ->. ( x = u /\ y = v ) ). |
| 5 |
|
simpr |
|- ( ( ( x = u /\ y = v ) /\ ( ph /\ ps ) ) -> ( ph /\ ps ) ) |
| 6 |
2 5
|
e1a |
|- (. ( ( x = u /\ y = v ) /\ ( ph /\ ps ) ) ->. ( ph /\ ps ) ). |
| 7 |
|
simpl |
|- ( ( ph /\ ps ) -> ph ) |
| 8 |
6 7
|
e1a |
|- (. ( ( x = u /\ y = v ) /\ ( ph /\ ps ) ) ->. ph ). |
| 9 |
|
pm3.2 |
|- ( ( x = u /\ y = v ) -> ( ph -> ( ( x = u /\ y = v ) /\ ph ) ) ) |
| 10 |
4 8 9
|
e11 |
|- (. ( ( x = u /\ y = v ) /\ ( ph /\ ps ) ) ->. ( ( x = u /\ y = v ) /\ ph ) ). |
| 11 |
10
|
in1 |
|- ( ( ( x = u /\ y = v ) /\ ( ph /\ ps ) ) -> ( ( x = u /\ y = v ) /\ ph ) ) |
| 12 |
11
|
eximi |
|- ( E. y ( ( x = u /\ y = v ) /\ ( ph /\ ps ) ) -> E. y ( ( x = u /\ y = v ) /\ ph ) ) |
| 13 |
12
|
eximi |
|- ( E. x E. y ( ( x = u /\ y = v ) /\ ( ph /\ ps ) ) -> E. x E. y ( ( x = u /\ y = v ) /\ ph ) ) |
| 14 |
|
simpr |
|- ( ( ph /\ ps ) -> ps ) |
| 15 |
6 14
|
e1a |
|- (. ( ( x = u /\ y = v ) /\ ( ph /\ ps ) ) ->. ps ). |
| 16 |
|
pm3.2 |
|- ( ( x = u /\ y = v ) -> ( ps -> ( ( x = u /\ y = v ) /\ ps ) ) ) |
| 17 |
4 15 16
|
e11 |
|- (. ( ( x = u /\ y = v ) /\ ( ph /\ ps ) ) ->. ( ( x = u /\ y = v ) /\ ps ) ). |
| 18 |
17
|
in1 |
|- ( ( ( x = u /\ y = v ) /\ ( ph /\ ps ) ) -> ( ( x = u /\ y = v ) /\ ps ) ) |
| 19 |
18
|
eximi |
|- ( E. y ( ( x = u /\ y = v ) /\ ( ph /\ ps ) ) -> E. y ( ( x = u /\ y = v ) /\ ps ) ) |
| 20 |
19
|
eximi |
|- ( E. x E. y ( ( x = u /\ y = v ) /\ ( ph /\ ps ) ) -> E. x E. y ( ( x = u /\ y = v ) /\ ps ) ) |
| 21 |
13 20
|
jca |
|- ( E. x E. y ( ( x = u /\ y = v ) /\ ( ph /\ ps ) ) -> ( E. x E. y ( ( x = u /\ y = v ) /\ ph ) /\ E. x E. y ( ( x = u /\ y = v ) /\ ps ) ) ) |
| 22 |
1
|
biimpi |
|- ( ch -> ( E. x E. y ( ( x = u /\ y = v ) /\ ph ) /\ E. x E. y ( ( x = u /\ y = v ) /\ ps ) ) ) |
| 23 |
22
|
dfvd1ir |
|- (. ch ->. ( E. x E. y ( ( x = u /\ y = v ) /\ ph ) /\ E. x E. y ( ( x = u /\ y = v ) /\ ps ) ) ). |
| 24 |
|
simpl |
|- ( ( E. x E. y ( ( x = u /\ y = v ) /\ ph ) /\ E. x E. y ( ( x = u /\ y = v ) /\ ps ) ) -> E. x E. y ( ( x = u /\ y = v ) /\ ph ) ) |
| 25 |
23 24
|
e1a |
|- (. ch ->. E. x E. y ( ( x = u /\ y = v ) /\ ph ) ). |
| 26 |
|
simpl |
|- ( ( ( x = u /\ y = v ) /\ ph ) -> ( x = u /\ y = v ) ) |
| 27 |
26
|
2eximi |
|- ( E. x E. y ( ( x = u /\ y = v ) /\ ph ) -> E. x E. y ( x = u /\ y = v ) ) |
| 28 |
25 27
|
e1a |
|- (. ch ->. E. x E. y ( x = u /\ y = v ) ). |
| 29 |
|
ax6e2ndeq |
|- ( ( -. A. x x = y \/ u = v ) <-> E. x E. y ( x = u /\ y = v ) ) |
| 30 |
29
|
biimpri |
|- ( E. x E. y ( x = u /\ y = v ) -> ( -. A. x x = y \/ u = v ) ) |
| 31 |
28 30
|
e1a |
|- (. ch ->. ( -. A. x x = y \/ u = v ) ). |
| 32 |
|
2sb5nd |
|- ( ( -. A. x x = y \/ u = v ) -> ( [ u / x ] [ v / y ] ph <-> E. x E. y ( ( x = u /\ y = v ) /\ ph ) ) ) |
| 33 |
31 32
|
e1a |
|- (. ch ->. ( [ u / x ] [ v / y ] ph <-> E. x E. y ( ( x = u /\ y = v ) /\ ph ) ) ). |
| 34 |
|
biimpr |
|- ( ( [ u / x ] [ v / y ] ph <-> E. x E. y ( ( x = u /\ y = v ) /\ ph ) ) -> ( E. x E. y ( ( x = u /\ y = v ) /\ ph ) -> [ u / x ] [ v / y ] ph ) ) |
| 35 |
34
|
com12 |
|- ( E. x E. y ( ( x = u /\ y = v ) /\ ph ) -> ( ( [ u / x ] [ v / y ] ph <-> E. x E. y ( ( x = u /\ y = v ) /\ ph ) ) -> [ u / x ] [ v / y ] ph ) ) |
| 36 |
25 33 35
|
e11 |
|- (. ch ->. [ u / x ] [ v / y ] ph ). |
| 37 |
|
simpr |
|- ( ( E. x E. y ( ( x = u /\ y = v ) /\ ph ) /\ E. x E. y ( ( x = u /\ y = v ) /\ ps ) ) -> E. x E. y ( ( x = u /\ y = v ) /\ ps ) ) |
| 38 |
23 37
|
e1a |
|- (. ch ->. E. x E. y ( ( x = u /\ y = v ) /\ ps ) ). |
| 39 |
|
2sb5nd |
|- ( ( -. A. x x = y \/ u = v ) -> ( [ u / x ] [ v / y ] ps <-> E. x E. y ( ( x = u /\ y = v ) /\ ps ) ) ) |
| 40 |
31 39
|
e1a |
|- (. ch ->. ( [ u / x ] [ v / y ] ps <-> E. x E. y ( ( x = u /\ y = v ) /\ ps ) ) ). |
| 41 |
|
biimpr |
|- ( ( [ u / x ] [ v / y ] ps <-> E. x E. y ( ( x = u /\ y = v ) /\ ps ) ) -> ( E. x E. y ( ( x = u /\ y = v ) /\ ps ) -> [ u / x ] [ v / y ] ps ) ) |
| 42 |
41
|
com12 |
|- ( E. x E. y ( ( x = u /\ y = v ) /\ ps ) -> ( ( [ u / x ] [ v / y ] ps <-> E. x E. y ( ( x = u /\ y = v ) /\ ps ) ) -> [ u / x ] [ v / y ] ps ) ) |
| 43 |
38 40 42
|
e11 |
|- (. ch ->. [ u / x ] [ v / y ] ps ). |
| 44 |
|
sban |
|- ( [ v / y ] ( ph /\ ps ) <-> ( [ v / y ] ph /\ [ v / y ] ps ) ) |
| 45 |
44
|
sbbii |
|- ( [ u / x ] [ v / y ] ( ph /\ ps ) <-> [ u / x ] ( [ v / y ] ph /\ [ v / y ] ps ) ) |
| 46 |
|
sban |
|- ( [ u / x ] ( [ v / y ] ph /\ [ v / y ] ps ) <-> ( [ u / x ] [ v / y ] ph /\ [ u / x ] [ v / y ] ps ) ) |
| 47 |
45 46
|
bitri |
|- ( [ u / x ] [ v / y ] ( ph /\ ps ) <-> ( [ u / x ] [ v / y ] ph /\ [ u / x ] [ v / y ] ps ) ) |
| 48 |
|
simplbi2comt |
|- ( ( [ u / x ] [ v / y ] ( ph /\ ps ) <-> ( [ u / x ] [ v / y ] ph /\ [ u / x ] [ v / y ] ps ) ) -> ( [ u / x ] [ v / y ] ps -> ( [ u / x ] [ v / y ] ph -> [ u / x ] [ v / y ] ( ph /\ ps ) ) ) ) |
| 49 |
48
|
com13 |
|- ( [ u / x ] [ v / y ] ph -> ( [ u / x ] [ v / y ] ps -> ( ( [ u / x ] [ v / y ] ( ph /\ ps ) <-> ( [ u / x ] [ v / y ] ph /\ [ u / x ] [ v / y ] ps ) ) -> [ u / x ] [ v / y ] ( ph /\ ps ) ) ) ) |
| 50 |
36 43 47 49
|
e110 |
|- (. ch ->. [ u / x ] [ v / y ] ( ph /\ ps ) ). |
| 51 |
|
2sb5nd |
|- ( ( -. A. x x = y \/ u = v ) -> ( [ u / x ] [ v / y ] ( ph /\ ps ) <-> E. x E. y ( ( x = u /\ y = v ) /\ ( ph /\ ps ) ) ) ) |
| 52 |
31 51
|
e1a |
|- (. ch ->. ( [ u / x ] [ v / y ] ( ph /\ ps ) <-> E. x E. y ( ( x = u /\ y = v ) /\ ( ph /\ ps ) ) ) ). |
| 53 |
|
biimp |
|- ( ( [ u / x ] [ v / y ] ( ph /\ ps ) <-> E. x E. y ( ( x = u /\ y = v ) /\ ( ph /\ ps ) ) ) -> ( [ u / x ] [ v / y ] ( ph /\ ps ) -> E. x E. y ( ( x = u /\ y = v ) /\ ( ph /\ ps ) ) ) ) |
| 54 |
53
|
com12 |
|- ( [ u / x ] [ v / y ] ( ph /\ ps ) -> ( ( [ u / x ] [ v / y ] ( ph /\ ps ) <-> E. x E. y ( ( x = u /\ y = v ) /\ ( ph /\ ps ) ) ) -> E. x E. y ( ( x = u /\ y = v ) /\ ( ph /\ ps ) ) ) ) |
| 55 |
50 52 54
|
e11 |
|- (. ch ->. E. x E. y ( ( x = u /\ y = v ) /\ ( ph /\ ps ) ) ). |
| 56 |
55
|
in1 |
|- ( ch -> E. x E. y ( ( x = u /\ y = v ) /\ ( ph /\ ps ) ) ) |
| 57 |
1 56
|
sylbir |
|- ( ( E. x E. y ( ( x = u /\ y = v ) /\ ph ) /\ E. x E. y ( ( x = u /\ y = v ) /\ ps ) ) -> E. x E. y ( ( x = u /\ y = v ) /\ ( ph /\ ps ) ) ) |
| 58 |
21 57
|
impbii |
|- ( E. x E. y ( ( x = u /\ y = v ) /\ ( ph /\ ps ) ) <-> ( E. x E. y ( ( x = u /\ y = v ) /\ ph ) /\ E. x E. y ( ( x = u /\ y = v ) /\ ps ) ) ) |