| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax6e2nd |
|- ( -. A. x x = y -> E. x E. y ( x = u /\ y = v ) ) |
| 2 |
|
ax6e2eq |
|- ( A. x x = y -> ( u = v -> E. x E. y ( x = u /\ y = v ) ) ) |
| 3 |
1
|
a1d |
|- ( -. A. x x = y -> ( u = v -> E. x E. y ( x = u /\ y = v ) ) ) |
| 4 |
2 3
|
pm2.61i |
|- ( u = v -> E. x E. y ( x = u /\ y = v ) ) |
| 5 |
1 4
|
jaoi |
|- ( ( -. A. x x = y \/ u = v ) -> E. x E. y ( x = u /\ y = v ) ) |
| 6 |
|
olc |
|- ( u = v -> ( -. A. x x = y \/ u = v ) ) |
| 7 |
6
|
a1d |
|- ( u = v -> ( E. x E. y ( x = u /\ y = v ) -> ( -. A. x x = y \/ u = v ) ) ) |
| 8 |
|
excom |
|- ( E. x E. y ( x = u /\ y = v ) <-> E. y E. x ( x = u /\ y = v ) ) |
| 9 |
|
neeq1 |
|- ( x = u -> ( x =/= v <-> u =/= v ) ) |
| 10 |
9
|
biimprcd |
|- ( u =/= v -> ( x = u -> x =/= v ) ) |
| 11 |
10
|
adantrd |
|- ( u =/= v -> ( ( x = u /\ y = v ) -> x =/= v ) ) |
| 12 |
|
simpr |
|- ( ( x = u /\ y = v ) -> y = v ) |
| 13 |
12
|
a1i |
|- ( u =/= v -> ( ( x = u /\ y = v ) -> y = v ) ) |
| 14 |
|
neeq2 |
|- ( y = v -> ( x =/= y <-> x =/= v ) ) |
| 15 |
14
|
biimprcd |
|- ( x =/= v -> ( y = v -> x =/= y ) ) |
| 16 |
11 13 15
|
syl6c |
|- ( u =/= v -> ( ( x = u /\ y = v ) -> x =/= y ) ) |
| 17 |
|
sp |
|- ( A. x x = y -> x = y ) |
| 18 |
17
|
necon3ai |
|- ( x =/= y -> -. A. x x = y ) |
| 19 |
16 18
|
syl6 |
|- ( u =/= v -> ( ( x = u /\ y = v ) -> -. A. x x = y ) ) |
| 20 |
19
|
eximdv |
|- ( u =/= v -> ( E. x ( x = u /\ y = v ) -> E. x -. A. x x = y ) ) |
| 21 |
|
nfnae |
|- F/ x -. A. x x = y |
| 22 |
21
|
19.9 |
|- ( E. x -. A. x x = y <-> -. A. x x = y ) |
| 23 |
20 22
|
imbitrdi |
|- ( u =/= v -> ( E. x ( x = u /\ y = v ) -> -. A. x x = y ) ) |
| 24 |
23
|
eximdv |
|- ( u =/= v -> ( E. y E. x ( x = u /\ y = v ) -> E. y -. A. x x = y ) ) |
| 25 |
8 24
|
biimtrid |
|- ( u =/= v -> ( E. x E. y ( x = u /\ y = v ) -> E. y -. A. x x = y ) ) |
| 26 |
|
nfnae |
|- F/ y -. A. x x = y |
| 27 |
26
|
19.9 |
|- ( E. y -. A. x x = y <-> -. A. x x = y ) |
| 28 |
25 27
|
imbitrdi |
|- ( u =/= v -> ( E. x E. y ( x = u /\ y = v ) -> -. A. x x = y ) ) |
| 29 |
|
orc |
|- ( -. A. x x = y -> ( -. A. x x = y \/ u = v ) ) |
| 30 |
28 29
|
syl6 |
|- ( u =/= v -> ( E. x E. y ( x = u /\ y = v ) -> ( -. A. x x = y \/ u = v ) ) ) |
| 31 |
7 30
|
pm2.61ine |
|- ( E. x E. y ( x = u /\ y = v ) -> ( -. A. x x = y \/ u = v ) ) |
| 32 |
5 31
|
impbii |
|- ( ( -. A. x x = y \/ u = v ) <-> E. x E. y ( x = u /\ y = v ) ) |