| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax6e2nd |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) |
| 2 |
|
ax6e2eq |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( 𝑢 = 𝑣 → ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) ) |
| 3 |
1
|
a1d |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑢 = 𝑣 → ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) ) |
| 4 |
2 3
|
pm2.61i |
⊢ ( 𝑢 = 𝑣 → ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) |
| 5 |
1 4
|
jaoi |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣 ) → ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) |
| 6 |
|
olc |
⊢ ( 𝑢 = 𝑣 → ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣 ) ) |
| 7 |
6
|
a1d |
⊢ ( 𝑢 = 𝑣 → ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣 ) ) ) |
| 8 |
|
excom |
⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ↔ ∃ 𝑦 ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) |
| 9 |
|
neeq1 |
⊢ ( 𝑥 = 𝑢 → ( 𝑥 ≠ 𝑣 ↔ 𝑢 ≠ 𝑣 ) ) |
| 10 |
9
|
biimprcd |
⊢ ( 𝑢 ≠ 𝑣 → ( 𝑥 = 𝑢 → 𝑥 ≠ 𝑣 ) ) |
| 11 |
10
|
adantrd |
⊢ ( 𝑢 ≠ 𝑣 → ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → 𝑥 ≠ 𝑣 ) ) |
| 12 |
|
simpr |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → 𝑦 = 𝑣 ) |
| 13 |
12
|
a1i |
⊢ ( 𝑢 ≠ 𝑣 → ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → 𝑦 = 𝑣 ) ) |
| 14 |
|
neeq2 |
⊢ ( 𝑦 = 𝑣 → ( 𝑥 ≠ 𝑦 ↔ 𝑥 ≠ 𝑣 ) ) |
| 15 |
14
|
biimprcd |
⊢ ( 𝑥 ≠ 𝑣 → ( 𝑦 = 𝑣 → 𝑥 ≠ 𝑦 ) ) |
| 16 |
11 13 15
|
syl6c |
⊢ ( 𝑢 ≠ 𝑣 → ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → 𝑥 ≠ 𝑦 ) ) |
| 17 |
|
sp |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → 𝑥 = 𝑦 ) |
| 18 |
17
|
necon3ai |
⊢ ( 𝑥 ≠ 𝑦 → ¬ ∀ 𝑥 𝑥 = 𝑦 ) |
| 19 |
16 18
|
syl6 |
⊢ ( 𝑢 ≠ 𝑣 → ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ¬ ∀ 𝑥 𝑥 = 𝑦 ) ) |
| 20 |
19
|
eximdv |
⊢ ( 𝑢 ≠ 𝑣 → ( ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ∃ 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑦 ) ) |
| 21 |
|
nfnae |
⊢ Ⅎ 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑦 |
| 22 |
21
|
19.9 |
⊢ ( ∃ 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑦 ↔ ¬ ∀ 𝑥 𝑥 = 𝑦 ) |
| 23 |
20 22
|
imbitrdi |
⊢ ( 𝑢 ≠ 𝑣 → ( ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ¬ ∀ 𝑥 𝑥 = 𝑦 ) ) |
| 24 |
23
|
eximdv |
⊢ ( 𝑢 ≠ 𝑣 → ( ∃ 𝑦 ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ∃ 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑦 ) ) |
| 25 |
8 24
|
biimtrid |
⊢ ( 𝑢 ≠ 𝑣 → ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ∃ 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑦 ) ) |
| 26 |
|
nfnae |
⊢ Ⅎ 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑦 |
| 27 |
26
|
19.9 |
⊢ ( ∃ 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑦 ↔ ¬ ∀ 𝑥 𝑥 = 𝑦 ) |
| 28 |
25 27
|
imbitrdi |
⊢ ( 𝑢 ≠ 𝑣 → ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ¬ ∀ 𝑥 𝑥 = 𝑦 ) ) |
| 29 |
|
orc |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣 ) ) |
| 30 |
28 29
|
syl6 |
⊢ ( 𝑢 ≠ 𝑣 → ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣 ) ) ) |
| 31 |
7 30
|
pm2.61ine |
⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣 ) ) |
| 32 |
5 31
|
impbii |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣 ) ↔ ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) |