Metamath Proof Explorer


Theorem 2zrngnring

Description: R is not a unital ring. (Contributed by AV, 6-Jan-2020)

Ref Expression
Hypotheses 2zrng.e E = z | x z = 2 x
2zrngbas.r R = fld 𝑠 E
2zrngmmgm.1 M = mulGrp R
Assertion 2zrngnring R Ring

Proof

Step Hyp Ref Expression
1 2zrng.e E = z | x z = 2 x
2 2zrngbas.r R = fld 𝑠 E
3 2zrngmmgm.1 M = mulGrp R
4 1 2 3 2zrngnmlid b E a E b a a
5 1 2 2zrngbas E = Base R
6 3 5 mgpbas E = Base M
7 1 2 2zrngmul × = R
8 3 7 mgpplusg × = + M
9 6 8 isnmnd b E a E b a a M Mnd
10 df-nel M Mnd ¬ M Mnd
11 9 10 sylib b E a E b a a ¬ M Mnd
12 4 11 ax-mp ¬ M Mnd
13 12 3mix2i ¬ R Grp ¬ M Mnd ¬ x Base R y Base R z Base R x y + R z = x y + R x z x + R y z = x z + R y z
14 3ianor ¬ R Grp M Mnd x Base R y Base R z Base R x y + R z = x y + R x z x + R y z = x z + R y z ¬ R Grp ¬ M Mnd ¬ x Base R y Base R z Base R x y + R z = x y + R x z x + R y z = x z + R y z
15 13 14 mpbir ¬ R Grp M Mnd x Base R y Base R z Base R x y + R z = x y + R x z x + R y z = x z + R y z
16 eqid Base R = Base R
17 eqid + R = + R
18 16 3 17 7 isring R Ring R Grp M Mnd x Base R y Base R z Base R x y + R z = x y + R x z x + R y z = x z + R y z
19 15 18 mtbir ¬ R Ring
20 19 nelir R Ring