Metamath Proof Explorer


Theorem 3dimlem1

Description: Lemma for 3dim1 . (Contributed by NM, 25-Jul-2012)

Ref Expression
Hypotheses 3dim0.j ˙=joinK
3dim0.l ˙=K
3dim0.a A=AtomsK
Assertion 3dimlem1 QR¬S˙Q˙R¬T˙Q˙R˙SP=QPR¬S˙P˙R¬T˙P˙R˙S

Proof

Step Hyp Ref Expression
1 3dim0.j ˙=joinK
2 3dim0.l ˙=K
3 3dim0.a A=AtomsK
4 neeq1 P=QPRQR
5 oveq1 P=QP˙R=Q˙R
6 5 breq2d P=QS˙P˙RS˙Q˙R
7 6 notbid P=Q¬S˙P˙R¬S˙Q˙R
8 5 oveq1d P=QP˙R˙S=Q˙R˙S
9 8 breq2d P=QT˙P˙R˙ST˙Q˙R˙S
10 9 notbid P=Q¬T˙P˙R˙S¬T˙Q˙R˙S
11 4 7 10 3anbi123d P=QPR¬S˙P˙R¬T˙P˙R˙SQR¬S˙Q˙R¬T˙Q˙R˙S
12 11 biimparc QR¬S˙Q˙R¬T˙Q˙R˙SP=QPR¬S˙P˙R¬T˙P˙R˙S